Link to home

First Report of Raspberry bushy dwarf virus Infecting Grapevine in Hungary

October 2012 , Volume 96 , Number  10
Pages  1,582.2 - 1,582.2

I. Mavrič Pleško and M. Viršček Marn, Agricultural Institute of Slovenia, Hacquetova ulica 17, SI-1000 Ljubljana, Slovenia; K. Nyerges, National Food Chain Safety Office, Directorate of Plant Protection, Soil Conservation and Agri-environment, Laboratory of Virology Velence, Hungary; and J. Lázár, Corvinus University, Institute for Viticulture and Enology, Researche Station of Kecskemét, Hungary

Go to article:
Accepted for publication 27 June 2012.

Raspberry bushy dwarf virus (RBDV) is the sole member of genus Idaeovirus and naturally infects Rubus species worldwide. It can be experimentally transmitted to many dicotyledonous plant species from different families. In Slovenia it has been reported to naturally infect grapevine, the first known non-Rubus natural host (3). However, RBDV from red raspberry and grapevine were found to be different in biological, serological, and molecular characteristics (4). From 2007 to 2010, grapevine (Vitis vinifera L.) vineyards were sampled in different parts of Hungary and tested for RBDV infection by double antibody sandwich (DAS)-ELISA using commercial reagents (Bioreba, Reinach, Switzerland). Overall, 181 samples were collected from 10 vineyards around Csörnyeföld, Badacsony, Eger, Tolcsva (Orémus), and Nagyréde. Samples were taken randomly unless plants showing virus-like symptoms were present, which were preferentially included in the survey. Two samples collected in 2010, each consisting of five leaves from five individual plants, tested positive by DAS-ELISA. They originated from a small private vineyard of Italian Riesling, Pinot Gris, and Rhein Riesling in the southwestern part of Hungary near Csörnyeföld where 29 samples were collected. All leaves were asymptomatic. Total RNA was extracted from positive samples using a RNeasy Plant Mini Kit (Qiagen, Hilden, Germany). cDNA was synthesized using primer RNA12 as described (4) and further amplified by PCR using primers RBDVUP1/RBDVLO4 that amplified an 872-bp fragment of RBDV coat protein and 3′ non-translated region (2). Amplification products from both samples were directly sequenced (Macrogen, Seoul, Korea). The sequences showed 98.6% identity between each other and were deposited in GenBank (Accession Nos. JQ928628 and JQ928629). Sequences were also compared with RBDV sequences deposited in GenBank. They showed 97.7 to 99.3% identity with RBDV sequences from grapevine from Slovenia and 94.2 to 96.1% with RBDV sequences from Rubus sp. Natural infection of grapevine with RBDV was first reported from Slovenia in 2003 (3) and was recently reported also from Serbia (1). To our knowledge, this is the first report of RBDV infection of grapevine in Hungary and suggests a wider presence of the virus in the region.

References: (1) D. Jevremovic and S. Paunovic. Pestic. Phytomed. (Belgrade) 26:55, 2011. (2) H. I. Kokko et al. BioTechniques 20:842, 1996. (3) I. Mavric Pleško et al. Plant Dis. 87:1148, 2003. (4) I. Mavric Pleško et al. Eur. J. Plant Pathol. 123:261, 2009.

© 2012 The American Phytopathological Society