Link to home

First Report of Flower Anthracnose Caused by Colletotrichum karstii in White Phalaenopsis Orchids in the United States

August 2012 , Volume 96 , Number  8
Pages  1,227.3 - 1,227.3

I. Jadrane, M. Kornievsky, D. E. Desjardin, and Z.-H. He, Department of Biology, San Francisco State University, CA 94132; L. Cai, State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Science, Beijing, China; and K. Hyde, School of Science, Mae Fah Luang University, Muang, Chiang Rai, 57100, Thailand

Go to article:
Accepted for publication 9 May 2012.

In October 2010, a Colletotrichum species was isolated from white Phalaenopsis flowers growing in a greenhouse in San Francisco, CA. This Phalaenopsis is a common commercial orchid hybrid generated mostly likely from Phalaenopsis amabilis and P. aphrodite. The white petals showed anthracnose-like lesions where necrotic tissue is surrounded by a ring of green tissue. The green halo tissues around the necrotic tissue contain functional chloroplasts. One-centimeter disks were cut around the necrotic sites and surface-sterilized with 95% ethanol and 0.6% sodium hypochlorite. The disks were placed on potato dextrose agar (PDA) medium to establish cultures. Pure cultures were obtained by subculturing hyphal tips onto fresh PDA plates. The generated colonies had white aerial mycelia and orange conidial mass. The color of the reverse colony varies between colorless and pale orange. Microscopic observations identified the conidia as cylindrical, straight, and rounded at both ends. In addition, the conidia were approximately 15.0 to 18.0 μm long and 5.0 to 6.5 μm in diameter. These observed morphological features suggested that these isolates possessed the same characteristics as previously described for Colletotrichum karstii, a species considered as part of the C. boninense species complex (1). Four putative independent Colletotrichum isolates were recovered (DED9596, DED9597, DED9598, and DED9599). To confirm the Colletotrichum isolates as the causative pathogen, healthy white Phalaenopsis flowers (five total) in a whole plant were sprayed with a conidial suspension (approximately 1.2 × 106 conidia/ml) of the isolates and incubated at 20°C and 100% relative humidity with cycles of 16 h light and 8 h of darkness. Approximately 1 ml of conidial suspension solution was used for each flower. The plants were watered regularly and flowers were sprayed with sterile double-distilled water daily. As negative controls, five flowers in a whole plant were sprayed with water. Fifteen to twenty days after inoculation, lesions started to form on the petals sprayed with the putative Colletotrichum isolates. All controls remained healthy. The Colletotrichum-inoculated flowers remained alive and did not die as a result of the infection. This same experiment was repeated and the same results were obtained. DNA was extracted from the necrotic regions of the petals infected by the pure cultures of the four isolates and used to sequence the 18S rRNA ITS (internal transcribed spacer) region. All four isolates gave identical ITS sequences. Analysis of the obtained representative sequences (GenBank Accession No. JQ277352) suggested that the isolated pathogen as C. karstii. Using the published ITS data for the C. boninense species complex (1), a phylogenetic tree was generated via the maximum likelihood method. This created tree places the isolates in the same group as C. karstii. This type of C. karstii infection in Phalaenopsis orchid petals was not documented in the U.S. before, although it has been reported in China and Thailand (2). To our knowledge, this is the first report of infection and green island formation caused by C. karstii on orchid flower in the United States.

References: (1) Damm et al. Studies in Mycology 73:1, 2012. (2) Yang et al. Cryptogamie Mycologie 32:229, 2011.

© 2012 The American Phytopathological Society