Link to home

Farm Management Effects on Rhizosphere Colonization by Native Populations of 2,4-Diacetylphloroglucinol-Producing Pseudomonas spp. and Their Contributions to Crop Health

June 2007 , Volume 97 , Number  6
Pages  756 - 766

Dorith Rotenberg , Raghavendra Joshi , Maria-Soledad Benitez , Laura Gutierrez Chapin , Amara Camp , Clara Zumpetta , Adam Osborne , Warren A. Dick , and Brian B. McSpadden Gardener

Department of Plant Pathology, The Ohio State University, OARDC, Wooster 44691.

Go to article:
Accepted for publication 9 December 2006.

Analyses of multiple field experiments indicated that the incidence and relative abundance of root-colonizing phlD+ Pseudomonas spp. were influenced by crop rotation, tillage, organic amendments, and chemical seed treatments in subtle but reproducible ways. In no-till corn plots, 2-year rotations with soybean resulted in plants with approximately twofold fewer phlD+ pseudomonads per gram of root, but 3-year rotations with oat and hay led to population increases of the same magnitude. Interestingly, tillage inverted these observed effects of cropping sequence in two consecutive growing seasons, indicating a complex but reproducible interaction between rotation and tillage on the rhizosphere abundance of 2,4-diacetlyphloroglucinol (DAPG) producers. Amending conventionally managed sweet corn plots with dairy manure compost improved plant health and also increased the incidence of root colonization when compared with nonamended plots. Soil pH was negatively correlated to rhizosphere abundance of phlD+ pseudomonads in no-till and nonamended soils, with the exception of the continuous corn treatments. Chemical seed treatments intended to control fungal pathogens and insect pests on corn also led to more abundant populations of phlD in different tilled soils. However, increased root disease severity generally was associated with elevated levels of root colonization by phlD+ pseudomonads in no-till plots. Interestingly, within a cropping sequence treatment, correlations between the relative abundance of phlD and crop stand or yield were generally positive on corn, and the strength of those correlations was greater in plots experiencing more root disease pressure. In contrast, such correlations were generally negative in soybean, a difference that may be partially explained by difference in application of N fertilizers and soil pH. Our findings indicate that farming practices can alter the relative abundance and incidence of phlD+ pseudomonads in the rhizosphere and that practices that reduce root disease severity (i.e., rotation, tillage, and chemical seed treatment) are not universally linked to increased root colonization by DAPG-producers.

© 2007 The American Phytopathological Society