Link to home

The sypA, sypB, and sypC Synthetase Genes Encode Twenty-Two Modules Involved in the Nonribosomal Peptide Synthesis of Syringopeptin by Pseudomonas syringae pv. syringae B301D

April 2003 , Volume 16 , Number  4
Pages  271 - 280

Brenda K. Scholz-Schroeder , 1 Jonathan D. Soule , 1 and Dennis C. Gross 2

1Department of Plant Pathology, Washington State University, Pullman, Washington 99164-6430, U.S.A.; 2Department of Plant Pathology and Microbiology, Texas A&M University, College Station, Texas 77843-2132, U.S.A.


Go to article:
Accepted 5 December 2002.

Syringopeptin is a necrosis-inducing phytotoxin, composed of 22 amino acids attached to a 3-hydroxy fatty acid tail. Syringopeptin, produced by Pseudomonas syringae pv. syringae, functions as a virulence determinant in the plant-pathogen interaction. A 73,800-bp DNA region was sequenced, and analysis identified three large open reading frames, sypA, sypB, and sypC, that are 16.1, 16.3, and 40.6 kb in size. Sequence analysis of the putative SypA, SypB, and SypC sequences determined that they are homologous to peptide synthetases, containing five, five, and twelve amino acid activation modules, respectively. Each module exhibited characteristic domains for condensation, aminoacyl adenylation, and thiolation. Within the aminoacyl adenylation domain is a region responsible for substrate specificity. Phylogenetic analysis of the substrate-binding pockets resulted in clustering of the 22 syringopeptin modules into nine groups. This clustering reflects the substrate amino acids predicted to be recognized by each of the respective modules based on placement of the syringopeptin NRPS (nonribosomal peptide synthetase) system in the linear (type A) group. Finally, SypC contains two C-terminal thioesterase domains predicted to catalyze the release of syringopeptin from the synthetase and peptide cyclization to form the lactone ring. The syringopeptin synthetases, which carry 22 NRPS modules, represent the largest linear NRPS system described for a prokaryote.


Additional keywords: lipopeptide phytotoxin, thiotemplate mechanism.

© 2003 The American Phytopathological Society