Quince (Cydonia oblonga Mill.) tree is traditionally grown in Serbia. The fruits are used for compote, marmalade, and brandy production. In December 2012, quince fruits cv. Leskovacka with symptoms of postharvest anthracnose were collected in a storage facility in the area of Sabac, western Serbia. The symptoms were observed on fruits approximately 2 months after harvest. The incidence of the disease was about 3%, but the symptoms were severe. Affected fruits showed sunken, dark brown to black lesions with orange conidial masses produced in black acervuli. Small pieces (3 to 5 mm) of necrotic tissue were surface sterilized for 1 min in 1% NaOCl, washed twice with sterile distilled water, and placed on potato dextrose agar (PDA). Macroscopic and microscopic morphology characteristics of three isolates were observed after growth on PDA for 7 days at 25°C under a 12-h photoperiod. Fungal colonies developed white to gray dense aerial mycelium with orange conidial masses in the center of the colony. Conidia were hyaline, aseptate, clavate with rounded distal apices, 15.2 (12.8 to 16.8) × 4.5 (4.0 to 5.2) μm (mean L/W ratio = 3.3, n = 100). Morphological characteristics are consistent with the description of Colletotrichum clavatum (2). Fungal isolates were also characterized by sequencing of the internal transcribed spacer (ITS) rDNA region using ITS1/IT4 primers and β-tubuline 2 gene using T1/T2 primers. The nucleotide sequences were deposited in GenBank (ITS Accession Nos. KF908866, KF908867, and KF908868; β-tubuline 2 gene KF908869, KF908870, and KF908871). BLAST analyses of ITS and β-tubuline 2 gene sequences showed that isolates from quince were 100% identical to other C. clavatum in GenBank (ITS JN121126, JN121130, JN121132, and JN121180; β-tubuline 2 gene JN121213 to 17, JN121219, JN121228, JN121261 to 62, and JN121266 to 69), thus confirming the morphological identification. To fulfill Koch's postulates, asymptomatic fruits of quince cv. Leskovacka (five fruits per isolate) were surface sterilized with 70% ethanol, wounded with a sterile needle, and inoculated with 50 μl of a spore suspension (1 × 106 conidia/ml). Five control fruits were inoculated with 50 μl of sterile distilled water. The experiment was repeated twice. After 10 days of incubation in plastic containers, under high humidity (>90% RH) at 25°C, typical anthracnose symptoms developed on inoculated fruits, while control fruits remained symptomless. The isolates recovered from symptomatic fruits showed the same morphological features as original isolates. C. clavatum previously indicated as group B (3), or genetic group A4 within the C. acutatum sensu lato complex (4), is responsible for olive anthracnose in some Mediterranean countries (1,2), and has been reported as causal agent of anthracnose on a wide range of other hosts including woody and herbaceous plants, ornamentals, and fruit trees worldwide (4). To our knowledge, this is the first report of C. clavatum in Serbia, and the first report of quince anthracnose caused by this pathogen in Europe. Anthracnose caused by C. clavatum can endanger the production and storage of quince in the future, and may require investigation of new disease management practices to control this fungus.
References: (1) S. O. Cacciola et al. J. Plant Pathol. 94:29, 2012. (2) R. Faedda et al. Phytopathol. Mediterr. 50:283, 2011. (3) R. Lardner et al. Mycol. Res. 103:275, 1999. (4) S. Sreenivasaprasad and P. Talhinhas. Mol. Plant Pathol. 6:361, 2005.