Link to home

The Effect of Landscape Pattern on the Optimal Eradication Zone of an Invading Epidemic

July 2010 , Volume 100 , Number  7
Pages  638 - 644

S. Parnell, T. R. Gottwald, C. A. Gilligan, N. J. Cunniffe, and F. van den Bosch

First and fifth authors: Biomathematics and Bioinformatics Division, Rothamsted Research, Harpenden, AL5 2JQ, UK; second author: U.S. Department of Agriculture, Agricultural Research Service, Ft. Pierce, FL 34945; and third and fourth authors: Department of Plant Sciences, University of Cambridge, Downing Street, Cambridge CB2 3EA, UK.

Go to article:
Accepted for publication 10 March 2010.

A number of high profile eradication attempts on plant pathogens have recently been attempted in response to the increasing number of introductions of economically significant nonnative pathogen species. Eradication programs involve the removal of a large proportion of a host population and can thus lead to significant social and economic costs. In this paper we use a spatially explicit stochastic model to simulate an invading pathogen and show that it is possible to identify an optimal control radius, i.e., one that minimizes the total number of hosts removed during an eradication campaign that is effective in eradicating the pathogen. However, by simulating the epidemic and eradication processes in multiple landscapes, we demonstrate that the optimal radius depends critically on landscape pattern (i.e., the spatial configuration of hosts within the landscape). In particular, we find that the optimal radius, and also the number of host removals associated with it, increases with both the level of aggregation and the density of hosts in the landscape. The result is of practical significance and demonstrates that the location of an invading epidemic should be a key consideration in the design of future eradication strategies.

The American Phytopathological Society, 2010