Link to home

Molecular Mapping of Loci Conferring Resistance to Different Pathotypes of the Spot Blotch Pathogen in Barley

July 2006 , Volume 96 , Number  7
Pages  699 - 708

H. Bilgic , B. J. Steffenson , and P. M. Hayes

First and second authors: Department of Plant Pathology, University of Minnesota, St. Paul 55108; and third author: Department of Crop and Soil Sciences, Oregon State University, Corvallis 97331

Go to article:
Accepted for publication 8 February 2006.

Spot blotch, caused by Cochliobolus sativus, is an important disease of barley in many production areas and is best controlled through the deployment of resistant cultivars. Information on the genetics of resistance in various sources can be useful in developing effective breeding strategies. Parents of the doubled haploid mapping population Calicuchima-sib/ Bowman-BC (C/B) exhibit a differential reaction to pathotypes 1 and 2 of C. sativus. To elucidate the genetics of spot blotch resistance in this population, C/B progeny were evaluated with both pathotypes at the seedling stage in the greenhouse and at the adult plant stage in the field. At the seedling stage, progeny segregated 84 resistant to 26 susceptible based on the qualitative analysis of infection response (IR) data to pathotype 1. This fit best to a 3:1 ratio, indicating that two genes were involved in conferring resistance. Quantitative analysis of the raw IR data to pathotype 1 revealed a single quantitative trait locus (QTL) on chromosome 4(4H) explaining 14% of the phenotypic variance. Adult plant resistance to pathotype 1 was conferred by QTL on chromosome 2(2H) and chromosome 3(3H), explaining 21 and 32% of the phenotypic variation, respectively. Bowman contributed the resistance alleles on chromosome 3(3H) and chromosome 4(4H), whereas Calicuchima-sib contributed the resistance allele on chromosome 2(2H). Resistance to pathotype 2 was conferred by a single gene (designated Rcs6) on chromosome 5(1H) based on qualitative analysis of data. Rcs6 was effective at both the seedling and adult plant stages and was contributed by Calicuchima-sib. This result was corroborated in the quantitative analysis of raw IR (seedling stage) and disease severity (adult plant stage) data as a single major effect (r2 = 0.93 and 0.88, respectively) QTL was identified on chromosome 5(1H). Progeny with resistance to both pathotypes were identified in the C/B population and may be useful in programs breeding for spot blotch resistance.

© 2006 The American Phytopathological Society