Link to home

A Major Gene for Powdery Mildew Resistance Transferred to Common Wheat from Wild Einkorn Wheat

February 1998 , Volume 88 , Number  2
Pages  144 - 147

A. N. Shi , S. Leath , and J. P. Murphy

First author: Department of Plant Pathology; second author: USDA-ARS and Department of Plant Pathology; and third author: Department of Crop Science, North Carolina State University, Raleigh, 27695

Go to article:
Accepted for publication 10 November 1997.

A major gene for resistance to wheat powdery mildew (Blumeria graminis f. sp. tritici = Erysiphe graminis f. sp. tritici) has been successfully transferred into hexaploid common wheat (Triticum aestivum, 2n = 6x = 42, AABBDD) from wild einkorn wheat (Triticum monococcum subsp. aegilopoides, 2n = 2x = 14, AA). NC96BGTA5 is a germ plasm line with the pedigree Saluda × 3/PI427662. The response patterns for powdery mildew resistance in NC96BGTA5 were tested with 30 differential isolates of B. graminis f. sp. tritici, and the line was resistant to all tested isolates. The analyses of P1, P2, F1, F2, and BC1F1 populations derived from NC96BGTA5 revealed two genes for wheat powdery mildew resistance in the NC96BGTA5 line. One gene, Pm3a, was from its recurrent parent Saluda, and the second was a new gene introgressed from wild einkorn wheat. The gene was determined to be different from Pm1 to Pm21 by gene-for-gene and pedigree analyses. The new gene was identified as linked to the Pm3a gene based on the F2 and BC1F1 populations derived from a cross between NC96BGTA5 and a susceptible cultivar NK-Coker 68-15, and the data indicated that the gene was located on chromosome 1A. It is proposed that this new gene be designated Pm25 for wheat powdery mildew resistance in NC96BGTA5. Three random amplified polymorphic DNA markers, OPX061050, OPAG04950, and OPAI14600, were found to be linked to this new gene.

The American Phytopathological Society, 1998