Link to home

First Report of “Candidatus Liberibacter solanacearum” Associated with Psyllid-Infested Tobacco in Nicaragua

September 2013 , Volume 97 , Number  9
Pages  1,244.3 - 1,244.3

J. E. Munyaneza and V. G. Sengoda, USDA-ARS, Yakima Agricultural Research Laboratory, 5230 Konnowac Pass Road, Wapato, WA 98951; E. Aguilar, Zamorano University, Km 30 carretera a Danlí, Tegucigalpa, Honduras; B. Bextine, University of Texas at Tyler, 3900 University Blvd., Tyler, TX 75799; and K. F. McCue, USDA-ARS, Crop Improvement and Utilization Research Unit, 800 Buchanan Street, Albany, CA 94710

Go to article:
Accepted for publication 1 April 2013.

In April of 2012, tobacco (Nicotiana tabacum) plants with symptoms resembling those caused by viral infection were observed in commercial fields in several departments in Nicaragua, including Esteli and Nueva Segovia. Heavy infestations of the psyllid Bactericera cockerelli, a major insect pest of potato and other solanaceous crops and vector of the bacterium “Candidatus Liberibacter solanacearum” (Lso) (2,3), were observed in the affected fields. All cultivars grown were affected and 5 to 100% of plants in each field were symptomatic. Symptoms on affected plants included apical leaf curling and stunting, overall chlorosis and plant stunting, young plant deformation with cabbage-like leaves, wilting, internal vascular necrosis of stems and leaf petioles, and overall poor leaf quality. Plant samples were collected from a total of three psyllid-infested fields in the municipalities of Esteli, Condega, and Jalapa (one field/municipality). The plant samples were first tested for viruses, including Potato virus Y, Tobacco mosaic virus, Cucumber mosaic virus, and Impatiens necrotic spot virus, using Immunostrips (Agdia, Elkhart, IN) and no virus was detected. Total DNA was extracted from leaf tissues of a total of 22 plants, including 17 symptomatic plants and five asymptomatic plants from two cultivars (Corojo and Habano) with the cetyltrimethylammonium bromide (CTAB) buffer extraction method (2,4). The DNA samples were tested by PCR using specific primer pairs OA2/OI2c and OMB 1482f/2086r, to amplify a portion of 16S rDNA and the outer membrane protein (OMB) genes, respectively, of Lso (2). 16 rDNA and OMB gene-derived fragments of 1,168 and 605 bp, respectively, were amplified from the DNA of 13 of 17 (76.5%) symptomatic plants, indicating the presence of Lso. No Lso was detected in the five asymptomatic plants. DNA amplicons of three plant samples (one plant/field) with each primer pair were cloned and two to four clones of each of the six amplicons were sequenced. BLASTn analysis of the 16S rDNA consensus sequences was the same for all three locations (GenBank Accession Nos. KC768323, KC768324, and KC768325) and showed 100% identity to numerous 16 rDNA sequences of Lso in GenBank, including accessions HM245242, JF811596, and JX559779. Similarly, identical OMB consensus sequences were observed in all three locations (KC768331 and KC768332 for Jalapa and Condega, respectively) that are 97 to 100% identical to a number of Lso sequences in GenBank (e.g., CP002371, FJ914617, JN848754, and JN848752). A second OMB sequence was isolated from the Esteli sample (KC768333) that was 98% identical with the consensus sequences from this and other sites and 100% identical to an OMB sequence from Lso in GenBank (JN848754). To our knowledge, this is the first report of Lso associated with tobacco. Tobacco is an important crop in many parts of the world, including Central and South America. This bacterium has also caused millions of dollars in losses to potato and several other solanaceous crops in the Americas and New Zealand (3). In addition, this plant pathogen has been reported as serious pest of carrot in Europe, where it is associated with the psyllids Trioza apicalis and B. trigonica (1,4).

References: (1) A. Alfaro-Fernandez et al. Plant Dis. 96:581, 2012. (2) J. M. Crosslin. Southwest. Entomol. 36:125, 2011. (3) J. E. Munyaneza. Am. J. Pot. Res. 89:329, 2012. (4) J. E. Munyaneza et al. J. Econ. Entomol. 103:1060, 2010.

© 2013 The American Phytopathological Society