Link to home

First Report of Forsythia Shoot Blight Caused by Phytophthora nicotianae in Connecticut

September 2014 , Volume 98 , Number  9
Pages  1,278.1 - 1,278.1

J. A. LaMondia and D. W. Li, The Connecticut Agricultural Experiment Station, Windsor, CT 06095; and A. M. Madeiras and R. L. Wick, The University of Massachusetts, Amherst, MA 01001



Go to article:
Accepted for publication 2 May 2014.

Blighting of Forsythia × intermedia ‘Showoff’ was first observed affecting several hundred plants in a commercial nursery in Connecticut in September 2012. Symptoms included wilting, leaf and stem blight, and dieback progressing to plant death. A Phytophthora sp. was isolated from symptomatic tissues on half-strength potato dextrose agar (½PDA). Colonies were white and cottony on ½PDA, reaching 9 mm in 15 days at 25°C, but colorless and inconspicuous on pimaricin, ampicillin, rifampicin, pentachloronitrobenzene agar (PARP) with sparse and limited aerial mycelium, reaching 60 mm in 15 days at 25°C. The characteristics of the pathogen were observed and measured from a 3-month-old colony on ½PDA. Sporangia were abundant, various in shape, ovoid, ellipsoid to pyriform or limoniform, occasionally gourd shaped or irregular; (17.9) 27.2 to 41.4 (47.3) × (12.6) 19.1 to 30.5 (36.7) μm (n = 30), length/breadth ratio 1.4 ± 0.2, papillate and noncaducous. Papillae measured 2.9 ± 0.8 × 3.4 ± 0.8 μm (n = 10). Chlamydospores were present, 23.4 ± 3.1 × 22 ± 3.3 μm (n = 10). Oogonia and oospores were not observed. Arachnoid mycelia were present. These morphological characteristics are consistent with Phytophthora nicotianae Breda de Haan (1). The identity of the pathogen was confirmed as P. nicotianae by BLAST analysis of ITS, Cox II, and beta tubulin gene sequences (99% match for the three sequences, E value = 0). Pathogenicity tests were conducted four times on healthy liners of Forsythia × intermedia ‘Showoff’ grown in 10-cm-diameter pots. Leaves and stems were wounded by pricking with a sterile needle and six plants were inoculated with 0.25 cm2 plugs of the pathogen growing on ½PDA placed on three leaves and in three stem nodes and covered with Parafilm. Controls consisted of an equal number of plants wounded and inoculated with ½PDA alone. All plants were placed inside high humidity chambers for 24 h and then transferred to a greenhouse for up to 1 month. Typical symptoms developed within 1 week of inoculation and the pathogen was re-isolated from diseased tissue. Disease incidence was nearly 100% of inoculated leaves and stems and not observed in control plants without the pathogen. Three replicate 6-week-old broadleaf tobacco ‘C9’ plants were each inoculated with tobacco or forsythia isolates of P. nicotianae or sterile media alone, by wounding stems and placing colonized 0.25 cm2 ½PDA plugs into wounds and covering with Parafilm. After 1 week, stems were split and the length of internal necrosis in the stem measured. Disease resulted from inoculation with both the tobacco and forsythia isolates and stem necrosis averaged 43 and 23 mm for tobacco or forsythia isolates, respectively. No necrosis was observed in the pathogen-free controls. P. nicotianae has been reported from the basal stem and roots of F. viridissima in Italy (2) and from shoots of Forsythia × intermedia in Virginia (3). To our knowledge, this is the first report of P. nicotianae causing shoot blight on Forsythia in the northeastern United States.

References: (1) J. van. Breda de Haan. Mededeelingenuit's Lands Plantentuin Batavia. 15:57, 1896. (2) S. O. Cacciola et al. Plant Dis. 78:525, 1994. (3) C. X. Hong et al. Plant Dis. 89:430, 2005.



© 2014 The American Phytopathological Society