Link to home

Differences of Three Ampeloviruses' Multiplication in Plant May Explain Their Incidences in Vineyards

March 2014 , Volume 98 , Number  3
Pages  395 - 400

Leonardo Velasco, Instituto Andaluz de Investigación y Formación Agraria, Pesquera, Alimentaria y de la Producción Ecológica (IFAPA), 29140 Churriana, Málaga, Spain; Josefina Bota and Rafael Montero, Institut de Recerca i Formació Agrària i Pesquera de les Illes Balears, 07009 Palma de Mallorca, Spain; and Enrico Cretazzo, IFAPA, Spain



Go to article:
Accepted for publication 1 October 2013.
Abstract

Grapevine leafroll ampeloviruses have been recently grouped into two major clades, one for Grapevine leafroll associated virus (GLRaV) 1 and 3 and another one grouping GLRaV-4 and its variants. In order to understand biological factors mediating differential ampelovirus incidences in vineyards, quantitative real-time polymerase chain reactions were performed to assess virus populations in three grapevine varieties in which different infection status were detected: GLRaV-3 + GLRaV-4, GLRaV-3 + GLRaV-4 strain 5, and GLRaV-4 alone. Specific primers based on the RNA-dependent RNA polymerase (RdRp) domains of GLRaV-3, GLRaV-4, and GLRaV-4 strain 5 were used. Absolute and relative quantitations of the three viruses were achieved by normalization of data to the concentration of the endogenous gene actin. In spring, the populations of GLRaV-4 and GLRaV-4 strain 5 were 1.7 × 104 to 5.0 × 105 genomic RNA copies/mg of petiole tissue whereas, for GLRaV-3, values were significantly higher, ranging from 5.6 × 105 and 1.0 × 107 copies mg–1. In autumn, GLRaV-4 and GLRaV-4 strain 5 populations increased significantly, displaying values for genome copies between 4.1 × 105 and 6.3 × 106 copies mg–1, whereas GLRaV-3 populations displayed a less pronounced boost but were still significantly higher, ranging from 4.1 × 106 to 1.6 × 107 copies mg–1. To investigate whether additional viruses may interfere in the quantifications the small RNA populations, vines were analyzed by Ion Torrent high-throughput sequencing. It allowed the identification of additional viruses and viroids, including Grapevine virus A, Hop stunt viroid, Grapevine yellow speckle viroid 1, and Australian grapevine viroid. The significance of these findings is discussed.



© 2014 The American Phytopathological Society