Link to home

First Report of Bacterial Leaf Spot of Pumpkin Caused by Xanthomonas cucurbitae in Georgia, United States

October 2013 , Volume 97 , Number  10
Pages  1,375.2 - 1,375.2

B. Dutta , R. D. Gitaitis , F. H. Sanders , C. Booth , S. Smith , and D. B. Langston , Department of Plant Pathology, University of Georgia, Tifton 31793

Go to article:
Accepted for publication 21 May 2013.

In August 2012, a commercial pumpkin (Cucurbita maxima L. cv. Neon) field in Terrell County, GA, had a disease outbreak that caused severe symptoms on leaves and fruits. Leaves displayed small (2 to 3 mm), angular, water-soaked, yellow lesions while fruits had small (2 to 3 mm), sunken, circular, dry lesions. The field exhibited 40% disease incidence with observable symptoms on fruits. In severe cases, fruit rots were also observed. Symptomatic leaves and fruits were collected from 25 pumpkin plants and isolations were made on both nutrient agar and yeast extract-dextrose-CaCO3 (YDC) agar medium (1). Xanthomonad-like yellow colonies were observed on both agar plates and colonies appeared mucoid on YDC. Suspect bacteria were gram-negative, oxidase positive, hydrolyzed starch and esculin, formed pits on both crystal violet pectate and carboxymethyl cellulose media, but were indole negative and did not produce nitrites from nitrates. Bacterial isolates also produced hypersensitive reactions on tobacco when inoculated with a bacterial suspension of 1 × 108 CFU/ml. Identity of the isolates were identified as genus Xanthomonas by using primers RST2 (5′AGGCCCTGGAAGGTGCCCTGGA3′) and RST3 (5′ATCGCACTGCGTACCGCGCGCGA3′) in a conventional PCR assay, which produced an 840-bp band. The 16S rRNA gene of five isolates was amplified using universal primers fD1 and rD1 (3) and amplified products were sequenced and compared using BLAST in GenBank. The nucleotide sequences (1,200 bp) of the isolates matched Xanthomonas cucurbitae (GenBank Accession AB680438.1), X. campestris (HQ256868.1), X. campestris pv. campestris (NR074936.1), X. hortorum (AB775942.1), and X. campestris pv. raphani (CP002789.1) with 99% similarity. PCR amplification and sequencing of a housekeeping gene atpD (ATP synthase, 720 bp) showed 98% similarity with X. cucurbitae (HM568911.1). Since X. cucurbitae was not listed in the BIOLOG database (Biolog, Hayward, CA), substrate utilization tests for three pumpkin isolates were compared with utilization patterns of Xanthomonas groups using BIOLOG reported by Vauterin et al. (4). The isolates showed 94.7, 93.7, and 92.6% similarity to the reported metabolic profiles of X. campestris, X. cucurbitae, and X. hortorum, respectively, of Xanthomonas groups 15, 8, and 2. However, PCR assay with X. campestris- and X. raphani-specific primers (3) did not amplify the pumpkin isolates, indicating a closer relationship with X. cucurbitae. Spray inoculations of five bacterial isolates in suspensions containing 1 × 108 CFU/ml on 2-week-old pumpkin seedlings (cv. Lumina) (n = five seedlings/isolate/experiment) under greenhouse conditions of 30°C and 70% RH produced typical yellow leaf spot symptoms on 100% of the seedlings. Seedlings (n = 10) spray-inoculated with sterile water were asymptomatic. Reisolated bacterial colonies from symptomatic seedlings displayed similar characteristics to those described above. Further confirmation of bacterial identity was achieved by amplifying and sequencing the 16S rRNA gene, which showed 98 to 99% similarity to X cucurbitae accessions in GenBank. To our knowledge, this is the first report of X. cucurbitae on pumpkin in Georgia. As this bacterium is known to be seedborne, it is possible that the pathogen might have introduced through contaminated seeds.

References: (1) N. W. Schaad et al. Laboratory Guide for the Identification of Plant Pathogenic Bacteria, third edition. APS Press. St. Paul, MN, 2001. (2) Y. Besancon et al. Biotechnol. Appl. Biochem. 20:131, 1994. (3) Leu et al. Plant Pathol. Bull. 19:137, 2010. (4) Vauterin et al. Int. J. Syst. Bacteriol. 45:472, 1995.

© 2013 The American Phytopathological Society