Link to home

First Report of Bacterial Leaf Spot Disease Caused by Pseudomonas syringae pv. syringae on Panax notoginseng

May 2013 , Volume 97 , Number  5
Pages  685.3 - 685.3

L.-H. Zhou, Y. Han, G.-H. Ji, Z.-S. Wang, and F. Liu, College of Plant Protection, Yunnan Agricultural University, Kunming 650201, China

Go to article:
Accepted for publication 4 December 2012.

Panax notoginseng is a species that produces a rare type of Chinese herbal medicine and is cultivated primarily in Yunnan Province. P. notoginseng has a 3-year-long crop cycle before harvest. A new bacterial disease was observed on P. notoginseng plants in the Wenshan Mountain area of Yunnan in 2012. The disease affected primarily leaves. Symptoms were circular or irregular brown leaf spots, surrounded by a yellow halo, located on the edges of the leaves. Eight creamy white pigmented, rounded strains were isolated consistently from leaf spots on Luria-Bertani agar (LB) medium, incubated at 28°C. Three strains (SQYB-1, SQYB-2, SQYB-3) of eight isolates were prepared for further study. Three isolates were purified and characterized: all were gram-negative, rod-shaped, motile, aerobic, non-spore forming, and negative for oxidase, potato soft rot, arginine dehydrolase, presence of tyrosinase and urease, nitrate, and fluorescent pigment production. Moreover, they were positive for levan production, presence of catalase, and for tobacco hypersensitivity. All three strains isolated were identified as Pseudomonas syringae pv. syringae (Pss) based on morphology, metabolic profile (Biolog Microbial ID System), and 16S rDNA sequence analysis (1). The metabolic similarity index between experiment strain SQYB-1 and a type of strain Pss was 0.619. The primers of 16S rDNA sequence amplification were 27F/1492R. Before sequencing, we cloned the PCR products. There was 99% homology in 16S rDNA sequences between one isolate, SQYB-1 (NCBI Accession No. JX876901) and Pss (HQ840766), supporting the identification of the P. notoginseng strains as Pss (3). For Koch's postulates, 10 surface-disinfected young leaves on three plants were inoculated with SQYB-1 isolates by spraying a phosphate-buffered saline cell suspension (3.0 × 108 CFU/ml) onto the leaves (4). Controls were inoculated similarly with sterile phosphate-buffered saline. Plants were covered with polyethylene bags for 24 h at 25°C and then transferred to a greenhouse. Circular or irregular brown spots were observed on all bacteria-inoculated leaves within 9 to 14 days after inoculation. No symptoms were observed on controls. Bacteria reisolated from inoculated leaves were identical to the original isolates as determined by the methods described above. The present study indicated that isolate SQYB-1 could independently infect P. notoginseng leaves, which was different from the finding of Luo et al. concerning involvement of Pss in root rot (2). To our knowledge, this is the first report of Pseudomonas syringae pv. syringae causing bacterial leaf spot on P. notoginseng in China.

References: (1) M. R. Gillings et al. PNAS 12:102, 2005. (2) W. F. Luo et al. J. Yunnan Agric. Univ. 14:123, 1999 (in Chinese). (3) C. L. Oliver et al. Plant Dis. 4:96, 2012. (4) H. Ornek et al. New Dis. Rep. 13:40, 2006.

© 2013 The American Phytopathological Society