Link to home

First Reports of Potato spindle tuber viroid on Solanum jasminoides and of Tomato apical stunt viroid on Solanum rantonnetti in Poland

December 2013 , Volume 97 , Number  12
Pages  1,663.1 - 1,663.1

E. Hennig and J. Pięcińska, The State Plant Health and Seed Inspection Service, ul. Żwirki i Wigury 73, 87-100 Toruń, Poland; and N. Borodynko and B. Hasiów-Jaroszewska, Institute of Plant Protection-National Research Institute, ul. Wł. Węgorka 20, 60-318 Poznań, Poland

Go to article:
Accepted for publication 8 July 2013.

Potato spindle tuber viroid (PSTVd) has a quarantine status in the EU whereas Tomato apical stunt viroid (TASVd) is listed in the EPPO Alert list. During 2007 to 2012 surveys for the presence of PSTVd in 299 ornamental plants of the family Solanaceae (including Solanum jasminoides, S. rantonnetti, Brugmansia sp. and Petunia sp.) were carried out in Poland. The availability of a Pospiviroid genus-specific primer pair (1), which allows for the detection of the most prevalent viroids in ornamental plants by RT-PCR, has facilitated surveys of ornamental plants for pospiviroids. Fifteen S. rantonnetti and twenty-one S. jasminoides plants were sampled randomly and tested. Samples originated from seven different Polish provinces. Total RNA extraction was performed from plant leaves using Master Pure RNA Purification Kit (Epicentre). The obtained RNAs were further used for RT-PCR amplification using SuperScript One-Step RT-PCR System with PlatinumTaq DNA Polymerase (Invitrogen) kit according to the manufacturer's instructions. The Pospiviroid genus-specific primer set Vir1 5′CTTCAGTTGTTTCCACCGGGTAG 3′ /Vir2 5′TTCCTGTGGTGCACTCCTGACC 3′ (1), was used to amplify a 262-bp RT-PCR product. In addition, three positive samples were tested using PSTVd specific primers 3H1 5′ ATCCCCGGGGAAACCTGGAGCGAAC3′ /2H1 5′CCCTGAAGCGCTCCTCCGAG 3′ (2,4) that amplified the 360-bp product. The presence of RT-PCR products of the expected size was confirmed in two S. jasminoides samples using both primer pairs. One positive sample of S. jasminoides in the testing season 2007/2008 was collected in Zachodniopomorskie Province. The second sample was collected in 2009 in the Lubuskie region. The obtained products were cloned into pGEM-Teasy vector and sequenced using M13F and M13R primers. The sequence comparison using MEGA5 software (3) revealed that both isolates were identical to each other and shared 98 to 100% sequence identity with other PSTVd isolates described to date. The obtained sequence was deposited in the GenBank database (Accession No. KC707563). In addition, in 20 samples of Solanaceae spp. collected in 2012, the presence of an RT-PCR product of 262 bp, typical for Pospiviroids, was shown in one sample of S. rantonnetti collected in Lubuskie Province. Sequencing of the PCR product identified TASVd, and the sequence has been deposited in GenBank (KC707564). Sap derived from PSTVd- and TASVd-positive samples was used to mechanically inoculate tomato plants (variety Moneymaker). In total, 25 plants were inoculated with PSTVd and 25 with TASVd. After 3 weeks, most of the tomato plants displayed growth reduction and distortion. Inoculated tomato plants were sampled and tested by RT-PCR for the presence of viroids and all obtained products were subjected to sequencing. The obtained sequences were identical with original ones. The viroids detected in the two Solanum sp. appeared to be efficiently transmitted to tomato, as 80% of the inoculated plants tested positive by RT-PCR. These results suggest that ornamental plants might act as a source of inocula for tomato or potato crops even if they do not display any visible symptoms. TASVd-infected S. rantonnetti was introduced to Poland from the Netherlands, while the origin of the PSTVd positive S. jasminoides is uncertain. Official eradication measures were imposed due to the detection of viroids in ornamental plants in Poland.

References: (1) R. A. Mumford et al. OEPP/EPPO Bulletin 30:431, 2000. (2) OEPP/EPPO Bulletin PM 7/33(1), 34:257, 2004. (3) K. Tamura et al. Mol. Biol. Evol. 28:2731, 2011. (4) H. L. Weidemann and U. Buchta. Potato Res. 41:1, 1998.

© 2013 The American Phytopathological Society