Link to home

First Report of Potato Blackleg Disease Caused by Pectobacterium atrosepticum in Guangdong China

December 2013 , Volume 97 , Number  12
Pages  1,652.3 - 1,652.3

X. M. She, Z. F. He, Y. F. Tang, Z. G. Du, and G. B. Lan, Plant Protection Research Institute, Guangdong Academy of Agricultural Sciences, Guangdong Provincial Key Laboratory of High Technology for Plant Protection, Guangzhou 501640, China. This study was funded by China Spark Program 2011GA780007 and the innovation team for characteristic vegetables of Guangdong provincial modern agriculture industries.

Go to article:
Accepted for publication 20 June 2013.

Potato (Solanum tuberosum L.) is an important crop in China. In 2013, diseased potatoes exhibiting blackleg and soft rot symptoms were found in the winter potato growing areas of Huizhou city, Guangdong Province, China, with an incidence of approximately 20%. Initially, the stem bases of infected plants blackened and this symptom spread upward. Later, foliage of the diseased plants became yellow and the stem rotted with vascular discoloration. Twenty diseased plants with typical black leg symptoms were collected from a 10-ha potato field with approximately 60,000 potato plants per hectare. A bacterium with small, irregular, round, fluidal, white colonies was isolated from the vascular tissue of all diseased plants on nutrient agar at 26°C for 2 days. Ten strains were randomly selected for pathogenicity assays. Potato plants (cv. Favorita) at the five- to six-leaf stage were inoculated by injecting their stems with 1 ml of each strain in a bacterial suspension (3 × 108 CFU/ml). The inoculated potato plants were incubated at 16 to 21°C and 65 to 85% humidity, and exhibited the same symptoms as the diseased potato plants in the field by 3 to 5 days post inoculation (dpi). The bacterium was reisolated from the diseased tissue (stem) of the inoculated potato plants and produced characteristic pits on crystal violet pectate medium (1). The bacterium utilized a-methyl glucoside, glucose, lactose, maltose, cellobiose, raffinose, melibiose, and citrate, but not d-arabitol, sorbitol, or malonate. The bacteria also gave a positive reaction for catalase and production of reducing substances from sucrose, but gave a negative reaction for oxidase, production of phosphatase, and indole. Using the universal bacterial 16S rDNA primer set, 27f/1541R (4), 1,400-bp fragments were amplified from the 10 strains. The sequences of the 10 fragments (GenBank Accessions KC695819 to KC695828) were identical and had 100% sequence identity with 16S rDNA of Pectobacterium atrosepticum CFBP 1526 (JN600332). Further, the 438-bp and 690-bp fragments were respectively amplified from all 10 strains with the P. atrosepticum-specific primers Y45/Y46 (3) and ECA1f/ECA2r (2). To our knowledge, this is the first report of potato blackleg disease caused by P. atrosepticum (formerly named as Erwinia carotovora subsp. atroseptica) in Guangdong Province, China.

References: (1) D. Cupples et al. Phytopathology 64:468, 1974. (2) S. H. De Boer et al. Phytopathology 85:854, 1995. (3) D. Frenchon et al. Potato Research 41:63, 1995. (4) M. Horita et al. J. Gen. Plant Pathol. 70:278, 2004.

© 2013 The American Phytopathological Society