Link to home

First Report of Gliocephalotrichum bacillisporum Causing Fruit Rot of Rambutan (Nephelium lappaceum) in Malaysia

August 2013 , Volume 97 , Number  8
Pages  1,110.3 - 1,110.3

M. A. Intan Sakinah and Z. Latiffah, School of Biological Sciences, University Sains Malaysia, 11800 USM, Penang, Malaysia

Go to article:
Accepted for publication 7 March 2013.

Rambutan (Nephelium lappaceum L.) is among the tropical fruit grown in Malaysia and the demand for export rose in 2011. A fruit rot was observed between August and December 2011 from several areas in the states of Pulau Pinang and Perak, Malaysia. The symptoms initially appeared as light brown, water-soaked lesions that developed first in the pericarp and pulp, later enlarging and becoming dark brown. Greyish brown mycelia were observed on infected areas that turned yellowish at later stages of infection. Gliocephalotrichum bacillisporum was isolated from infected fruit by surface sterilization techniques. Conidia were mass-transferred onto potato dexstrose agar (PDA) plates and incubated at 27 ± 1°C. Tissue pieces (5 × 5 mm) excised from the margins between infected and healthy areas were then surface sterilized in 1% sodium hypochlorite for 3 to 5 min before being rinsed with distilled water, plated on PDA, and incubated at 27 ± 1°C for 7 days. Ten isolates of G. bacillisporum were obtained. Colonies on PDA were initially white before turning yellow with a feathery appearance. Microscopic characteristics on carnation leaf agar (CLA) consisted of hyaline conidia that were slightly ellipsoid to bacilliform with rounded apex ranging from 6.0 to 8.5 μm long and 2.0 to 2.5 μm wide. Conidiophores (70 to 130 μm long) were mostly single arising from large hypha approximately 13 to 16 μm. The conidiogenous structures were mostly quadriverticillate with dense, short, penicillate branches. The phialides were cylindrical and finger-like. Chlamydospores were present singly, in groups of 2 to 4, or in occasionally branched short chains and were brown in color with thick walls ranging from 11 to 13 μm. The cultural and morphological characteristics of G. bacillisporum isolates in the present study were very similar to previously published descriptions (1) except the conidiophores formed without sterile stipe extensions. All the G. bacillisporum isolates were deposited in culture collection at the Plant Pathology Lab, University Sains Malaysia, Penang. Molecular identification was accomplished from the ITS regions using ITS1 and ITS2 primers, and the β-tubulin gene using Bt2a and Bt2b primers (2). BLAST results from the ITS regions showed a 98 to 99% similarity with sequences of G. bacillisporum isolates reported in GenBank. Accession numbers of G. bacillisporum ITS regions: JX484850, JX484852, JX484853, JX484856, JX484858, JX484860, JX484862, JX484866, JX484867, and JX484868. The identity of G. bacillisporum isolates infecting rambutan was further confirmed by β-tubulin sequences (KC683909, KC683911, KC683912, KC683916, KC683919, KC683920, KC683923, KC683926, and KC683927), which showed 92 to 95% similarity with sequences of G. bacillisporum. Pathogenicity tests were also performed using mycelial plug (5 mm) and sprayed conidial suspensions (20 μl suspension of 106 conidia/ml) prepared from 7-day-old cultures. Inoculated fruits were incubated at 27 ± 1°C and after 10 days, similar rotting symptoms appeared on the fruit surface. The pathogen was reisolated from fruit rot lesions, thus fulfilling Koch's postulates, and tests were repeated twice. To our knowledge, this is the first report of G. bacillisporum causing fruit rot of rambutan (N. lappaceum L.) in Malaysia.

References: (1) C. Decock et al. Mycologia 98:488, 2006. (2) N. L. Glass and G. C. Donaldson. Appl. Environ Microbiol. 61:1323, 1995.

© 2013 The American Phytopathological Society