Link to home

First Report of a Soft Rot of Phalaenopsis aphrodita Caused by Dickeya dieffenbachiae in China

May 2012 , Volume 96 , Number  5
Pages  760.1 - 760.1

J. N. Zhou, B. R. Lin, H. F. Shen, and X. M. Pu, Plant Protection Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China; Z. N. Chen, Shenzhen Academy of Inspection and Quarantine, Shenzhen 518010, China; and J. J. Feng, Animal and Plant Inspection and Quarantine Technology Center, Shenzhen, 518010, China

Go to article:
Accepted for publication 1 January 2012.

Phalaenopsis orchids, originally from tropical Asia, are mainly planted in Thailand, Singapore, Malaysia, the Philippines, and Taiwan and have gained popularity from consumers all over the world. The cultivation area of Phalaenopsis orchids has been rising and large-scale bases have been established in mainland China, especially South China because of suitable environmental conditions. In September 2011, a soft rot of Phalaenopsis aphrodita was found in a Phalaenopsis planting base in Guangzhou with an incidence of ~15%. Infected plants initially showed water-soaked, pale-to-dark brown pinpoint spots on leaves that were sometimes surrounded by a yellow halo. Spots expanded rapidly with rising humidity and temperatures, and in a few days, severely extended over the blade with a light tan color and darker brown border. Lesions decayed with odorous fumes and tissues collapsed with inclusions exuding. The bacterium advanced to the stem and pedicle. Finally, leaves became papery dry and the pedicles lodged. Six diseased samples were collected, and bacteria were isolated from the edge of symptomatic tissues after sterilization in 0.3% NaOCl for 10 min, rinsing in sterile water three times, and placing on nutrient agar for culture. Twelve representative isolates were selected for further characterization. All strains were gram negative, grew at 37°C, were positive for indole production, and utilized malonate, glucose, and sucrose but not glucopyranoside, trehalose, or palatinose. Biolog identification (version 4.20.05, Hayward, CA) was performed and Pectobacterium chrysanthemi (SIM 0.868) was confirmed for the tested isolates (transfer to genus Dickeya). PCR was used to amplify the 16S rDNAgene with primers 27f and 1492r, dnaX gene with primers dnaXf and dnaXr (3), and gyrB gene with primers gyrBf (5′-GAAGGYAAAVTKCATCGTCAGG-3′) and gyrB-r1 (5′-TCARATATCRATATTCGCYGCTTTC-3′) designed on the basis of the published gyrB gene sequences of genus Dickeya. BLASTn was performed online, and phylogeny trees (100% bootstrap values) were created by means of MEGA 5.05 for these gene sequences, respectively. Results commonly showed that the representative tested strain, PA1, was most homologous to Dickeya dieffenbachiae with 98% identity for 16S rDNA(JN940859), 97% for dnaX (JN989971), and 96% for gyrB (JN971031). Thus, we recommend calling this isolate D. dieffenbachiae PA1. Pathogenicity tests were conducted by injecting 10 P. aphrodita seedlings with 100 μl of the bacterial suspension (1 × 108 CFU/ml) and another 10 were injected with 100 μl of sterile water as controls. Plants were inoculated in a greenhouse at 28 to 32°C and 90% relative humidity. Soft rot symptoms were observed after 2 days on the inoculated plants, but not on the control ones. The bacterium was isolated from the lesions and demonstrated identity to the inoculated plant by the 16S rDNA sequence comparison. Previously, similar diseases of P. amabilis were reported in Tangshan, Jiangsu, Zhejiang, and Wuhan and causal agents were identified as Erwinia spp. (2), Pseudomonas grimontii (1), E. chrysanthemi, and E. carotovora subsp. carovora (4). To our knowledge, this is the first report of D. dieffenbachiae causing soft rot disease on P. aphrodita in China.

References: (1) X. L. Chu and B. Yang. Acta Phytopathol. Sin. 40:90, 2010. (2) Y. M. Li et al. J. Beijing Agric. Coll. 19:41, 2004. (3) M. Sławiak et al. Eur. J. Plant Pathol. 125:245, 2009. (4) Z. Y. Wu et al. J. Zhejiang For. Coll. 27:635, 2010.

© 2012 The American Phytopathological Society