Link to home

Stem-Pitting Citrus tristeza virus Predominantly Transmitted by the Brown Citrus Aphid from Mixed Infections Containing Non-Stem-Pitting and Stem-Pitting Isolates

August 2011 , Volume 95 , Number  8
Pages  913 - 920

R. H. Brlansky and Avijit Roy, University of Florida, Plant Pathology Department, Citrus Research and Education Center, Lake Alfred 33850; and V. D. Damsteegt, Foreign Disease-Weed Science Research Unit, United States Department of Agriculture–Agricultural Research Service, Fort Detrick, MD 21702



Go to article:
Accepted for publication 24 March 2011.
Abstract

Citrus tristeza virus (CTV) is a phloem-limited Closterovirus that produces a variety of symptoms in various Citrus spp. One of these symptoms is stem pitting (SP). SP does not occur in all Citrus spp. but when it does it may cause low tree vigor, decline, and an economic reduction in fruit size and yield. Historically, the first appearance of CTV-SP in a citrus area often occurs after the introduction of the most efficient CTV vector, the brown citrus aphid (BCA), Toxoptera citricida. Hypotheses for this association range from the introduction of these strains in new planting materials to the increased ability of BCA to transmit SP strains from existing CTV sources. It is known that CTV often exists as a complex of isolates or subisolates. Single and multiple BCA transmissions have been used to separate different genotypes or strains of CTV from mixed CTV infected plants. This study was initiated to determine what the BCA transmits when an exotic severe SP CTV isolate B12 from Brazil or B408 from Dominican Republic are mixed with a non-SP (NSP) isolate, FS627 from Florida. Biological and molecular data was generated from grafted mixtures of these isolates and their aphid-transmitted subisolates. Single-strand conformation polymorphism patterns of the 5′ terminal region of open reading frame (ORF) 1a, the overlapping region of ORF1b and ORF2, and the major coat protein gene region of NSP and SP CTV-grafted plants remained unchanged but the patterns of doubly inoculated plants varied. The haplotype diversity within SP isolates B12, B408, and mixtures of NSP and SP isolates (FS627/B12 and FS627/B408) and aphid-transmitted subisolates from doubly inoculated plants was determined by analysis of the haplotype nucleotide sequences. Aphid transmission experiments, symptoms, and molecular analyses showed that SP-CTV was more frequently transmitted with or without NSP-CTV from mixed infections.



© 2011 The American Phytopathological Society