Link to home

Wind Speed Effects on the Quantity of Xanthomonas citri subsp. citri Dispersed Downwind from Canopies of Grapefruit Trees Infected with Citrus Canker

June 2010 , Volume 94 , Number  6
Pages  725 - 736

C. H. Bock and J. H. Graham, University of Florida, CREC, 700 Experiment Station Rd., Lake Alfred, FL 33850; T. R. Gottwald, USDA-ARS-USHRL, 2001 S. Rock Rd., Ft. Pierce, FL 34945; and A. Z. Cook and P. E. Parker, USDA-APHIS-PPQ, Moore Air Base, Edinburg, TX 78539



Go to article:
Accepted for publication 15 January 2010.
ABSTRACT

The epidemic of citrus canker (Xanthomonas citri subsp. citri) in Florida continues to expand since termination of the eradication program in 2006. Storms are known to be associated with disease spread, but little information exists on the interaction of fundamental physical and biological processes involved in dispersal of this bacterium. To investigate the role of wind speed in dispersal, wind/rain events were simulated using a fan to generate wind up to 19 m·s-1 and spray nozzles to simulate rain. Funnels at ground level and panels at 1.3 m height and distances up to 5 m downwind collected wind-driven splash. Greater wind speeds consistently dispersed more bacteria, measured by concentration (colony forming units [CFU] ml-1) or number sampled (bacteria flux density [BFD] = bacteria cm-2 min-1), from the canopy in the splash. The CFU ml-1 of X. citri subsp. citri collected by panels 1 m downwind at the highest wind speed was up to 41-fold greater than that collected at the lowest wind speed. BFD at the highest wind speed was up to 884-fold higher than that collected at the lowest wind speed. Both panels at distances >1 m and funnels at distances >0 m collected many-fold more X. citri subsp. citri at higher wind speeds compared to no wind (up to 1.4 × 103-fold greater CFU ml-1 and 1.8 × 105-fold the BFD). The resulting relationship between wind speed up to 19 m·s-1 and the mean CFU ml-1 collected by panel collectors downwind was linear and highly significant. Likewise, the mean CFU ml-1 collected from the funnel collectors had a linear relationship with wind speed. The relationship between wind speed and BFD collected by panels was generally similar to that described for CFU ml-1 of X. citri subsp. citri collected. However, BFD collected by funnels was too inconsistent to determine a meaningful relationship with increasing wind speed. The quantity of bacteria collected by panels declined with distance, and the relationship was described by an inverse power model (R2 = 0.94 to 1.00). At higher wind speeds, more bacteria were dispersed to all distances. Windborne inoculum in splash in subtropical wet environments is likely to be epidemiologically significant, as both rain intensity and high wind speed can interact to provide conditions conducive for dispersing large quantities of bacteria from canker-infected citrus trees. Disease and crop management aimed at reducing sources of inoculum and wind speeds in a grove should help minimize disease spread by windborne inoculum.



© 2010 The American Phytopathological Society