Link to home

First Report of Leaf Spot Caused by Pseudomonas cichorii on Coreopsis lanceolata in Italy

September 2009 , Volume 93 , Number  9
Pages  967.1 - 967.1

A. Garibaldi and G. Gilardi, Centre of Competence AGROINNOVA, Via Leonardo da Vinci 44, 10095 Grugliasco, Italy; C. Moretti, Dipartimento di Arboricoltura e Protezione delle Piante, Università di Perugia, Borgo XX Giugno 74, 06121 Perugia, Italy; and M. L. Gullino, Centre of Competence AGROINNOVA, Via Leonardo da Vinci 44, 10095 Grugliasco, Italy



Go to article:
Accepted for publication 3 June 2009.

Coreopsis lanceolata L. (Compositae), an ornamental species grown in parks and gardens, is very much appreciated for its long-lasting flowering period. In August of 2008, pot-grown plants with necrotic leaf lesions were observed in a commercial nursery located near Biella (northern Italy). Lesions were present, especially along the margin of basal leaves, and sometimes had a chlorotic halo. On infected leaves, dark brown necrosis developed. Leaf stalks were sometimes affected. In many cases, the leaves, especially those at collar level, were withered. Of 1,500 plants, 15% were infected by the disease. Microscopic examination did not reveal any fungal structures within the lesions. Small fragments of tissue from 30 affected leaves were macerated for 15 min in casein hydrolysate and 0.1-ml aliquots of the resulting suspension were spread onto Luria Bertani agar (LB) and potato dextrose agar (PDA). Plates were maintained at 22 ± 1°C for 48 h. No fungi were isolated from the leaf spots on LB or PDA. Colonies similar to those of Pseudomonas spp. were consistently isolated on LB. Colonies were fluorescent on King's medium B, levan negative, oxidase positive, potato soft rot negative, arginine dihydrolase negative, and tobacco hypersensitivity positive (LOPAT test). The bacterial colonies were identified as Pseudomonas cichorii (2). The internal transcribed spacer (ITS) region of rDNA was amplified using primers 27F and 1492R and sequenced (GenBank Accession No. FJ534557). BLAST analysis (1) of the 998-bp segment showed a 98% homology with the sequence of P. cichorii. The pathogenicity of one isolate was tested twice by growing the bacterium in nutrient broth shake cultures for 48 h at 20 ± 1°C. The suspension was centrifuged, the cell pellet resuspended in sterile water to a concentration of 107 CFU/ml, and 30 4-month-old healthy coreopsis plants were sprayed with the inoculum. The same number of plants was sprayed with sterile nutrient broth as a control. After inoculation, plants were covered with plastic bags for 48 h and placed in a growth chamber at 20 ± 1°C. Five days after inoculation, lesions similar to those seen in the field were observed on all plants inoculated with the bacterium, but not on the controls. Ten days later, 40% of the leaves were withered. Isolations were made from the lesion margins on LB and the resulting bacterial colonies were again identified as P. cichorii. The pathogen caused the same symptoms also on plants of Dendranthema frutescens (cv. Camilla), Chrysanthemum morifolium (cvs. Eleonora and Captiva), and an Osteospermum sp. (cv. Wild side) when artificially inoculated with the pathogen with the same methodology. The same bacterial leaf spot caused by P. cichorii was observed in 2005 in other nurseries in the same area on Phlox paniculata (3). To our knowledge, this is the first report of bacterial leaf spot caused by P. cichorii on C. lanceolata in Italy.

References: (1) S. F. Altschul et al. Nucleic Acids Res. 25:3389, 1997. (2) H. Bergey et al. Bergey's Manual on Determinative Bacteriology. Williams and Wilkins, Baltimore, MD, 1994. (3) A. Garibaldi et al. Plant Dis. 89:912, 2005.



© 2009 The American Phytopathological Society