Link to home

First Report of Pepper as a Natural Host for Pelargonium zonate spot virus in Spain

December 2009 , Volume 93 , Number  12
Pages  1,346.2 - 1,346.2

F. Escriu, Centro de Investigación y Tecnología Agroalimentaria de Aragón, Av. Montañana 930, 50059 Zaragoza, Spain; M. A. Cambra, Centro de Protección Vegetal, DGA, Av. Montañana, 930, 50059 Zaragoza, Spain; and M. Luis-Arteaga, Centro de Investigación y Tecnología Agroalimentaria de Aragón, Av. Montañana 930, 50059 Zaragoza, Spain

Go to article:
Accepted for publication 8 September 2009.

Pelargonium zonate spot virus (PZSV) was first reported on Pelargonium zonale (L.) L'Hér. ex Aiton and later on tomato in Italy, Spain, France (1), and the United States (2). In Spain, PZSV was first detected in 1996 in tomato plants of cv. Royesta from greenhouses in Zaragoza Province (3) and subsequently in tomato in the Catalonia and Navarra areas. In April 2006, symptoms of PZSV were found at high incidence on tomato in a greenhouse in Huesca, Aragón (northeastern Spain). Randomly distributed pepper plants (Capsicum annuum L.) of cv. Estilo F1 growing in the same greenhouse showed severe foliar chlorotic ringspots and line patterns similar to those observed in tomato. Samples from symptomatic peppers and tomatoes and one asymptomatic weed of Rubia tinctorum L. tested positive by double-antibody sandwich (DAS)-ELISA using polyclonal antibodies against PZSV (Agdia Inc., Elkhart, IN and DSMZ, Braunschweig, Germany) as did a Spanish PZSV isolate used as a positive control (3). Sap extracts from two tomatoes, three peppers, and the single R. tinctorum plant were mechanically inoculated to 22 indicator species, including pepper and tomato. On 17 of 22 species inoculated, sap from symptomatic tomatoes and peppers elicited local or systemic symptoms similar to those reported earlier for PZSV isolates (3). Systemic symptoms were mainly mosaic, chlorotic, and necrotic line patterns and ringspots on leaves of most indicator species, closely resembling those observed on the greenhouse pepper and tomato plants. Symptoms on inoculated tomatoes also included stem necrosis and death. Reactions of indicator species did not indicate the presence of any other pepper- or tomato-infecting viruses. Both field infected and mechanically inoculated plants of pepper cvs. Yolo Wonder and Doux des Landes were maintained in the greenhouse until the development of fruit symptoms. Only fruits of cv. Yolo Wonder showed dark green and slightly depressed circles on their surface. Local and systemic infection by PZSV was confirmed by DAS-ELISA in most inoculated plants. Total RNA from leaves of field or inoculated plants was used as template for amplification by reverse transcription (RT)-PCR with primers R3-F and R3-R that are specific for the PZSV 3a gene (2), and amplicons were sequenced directly. The sequences of 697 nt from pepper and tomato isolates from the same greenhouse were identical (GenBank Accession Nos. CQ178217 and CQ178216, respectively) and had 96.1% identity to nucleotides 384 to 1,080 in PZSV RNA-3 (NC_003651). Our results confirm the natural infection of pepper plants in Huesca by PZSV. To our knowledge, this is the first report of pepper as a natural host for PZSV, a significant finding considering the potential risks of PZSV dispersion whenever tomato and pepper coexist, particularly in greenhouses and nurseries.

References: (1) M. Finetti-Sialer and D. Gallitelli. J. Gen. Virol. 84:3143, 2003. (2) H. Y. Liu and J. L. Sears. Plant Dis. 91:633, 2007. (3) M. Luis-Arteaga and M. A. Cambra. Plant Dis. 84:807, 2000.

© 2009 The American Phytopathological Society