Link to home

First Report of Southern Blight of Ruellia brittoniana Caused by Sclerotium rolfsii in Louisiana

July 2004 , Volume 88 , Number  7
Pages  770.1 - 770.1

G. E. Holcomb , Department of Plant Pathology and Crop Physiology, Louisiana State University AgCenter, Baton Rouge 70803

Go to article:
Accepted for publication 14 April 2004.

Ruellia brittoniana, Mexican petunia, is an herbaceous flowering perennial grown in hardiness zones 8 to 10 in the southern and western United States. Popular dwarf forms with flower colors of white, pink, and blue are used as ground covers and borders. In April of 2003, root and stem rot that caused plant death was observed on cv. Katie (dwarf form, pink flowers) at a wholesale nursery in southern Louisiana. Plants were growing in a vermiculite and sand mix. The grower had purchased the plants from an out-of-state source, and approximately one-half of 1,440 plants were dead or dying. Symptoms included wilt, basal stem rot, and root rot. Peripheral roots were covered with a white mycelial layer that contained white sclerotial initials and small, brown sclerotia. Fungal isolates from infected roots grown on potato dextrose agar (PDA) produced white mycelia and 1- to 2-mm-diameter dark brown sclerotia. Sclerotia were nearly round with smooth surfaces and distributed over the entire colony. Isolates were identified as Sclerotium rolfsii on the basis of mycelial characteristics and color, size, and distribution of sclerotia. Two-month-old seedlings (6 to 10 cm high) of R. brittoniana, from seed of cv. Katie, were used in pathogenicity tests. Inoculum was grown in 10-cm-diameter plastic, culture dishes on PDA medium. Blended inoculum was prepared from a single 1-week-old culture that was composed of mycelia and sclerotia and blended 4 to 6 s at high speed in 100 ml of distilled water. In test one, 5 ml of inoculum was placed at the base of each inoculated plant. In test two, a single 5-mm-diameter agar plug with mycelium plus four sclerotia was placed beside plant stems near soil line. In test three, 5 ml of blended inoculum was dripped on exposed roots after plants were removed from pots. In test four, exposed plant roots were dipped in the blended inoculum. Each test contained 10 inoculated plants, and 10 noninoculated plants served as controls. All plants were placed in a dew chamber maintained at 28°C for 2 days and then returned to a greenhouse to observe development of symptoms and signs of disease. In tests one and two, basal stem rot and wilt developed on inoculated plants after 2 days and after 5 to 8 days all were dead. Inoculated plants from tests three and four were alive 4 months after inoculation, but were showing symptoms including leaf yellowing and drop, moderate to severe root rot, and some plants had begun to show white mycelia and white sclerotial initials on peripheral roots by January 2004. All noninoculated plants remained healthy and S. rolfsii was reisolated from infected plants in each test. To my knowledge, this is the first report of S. rolfsii causing disease on R. brittoniana.

© 2004 The American Phytopathological Society