Link to home

First Report on the Presence of Leptosphaeria maculans Pathogenicity Group-3, the Causal Agent of Blackleg of Canola in Manitoba

October 2003 , Volume 87 , Number  10
Pages  1,268.1 - 1,268.1

W. G. D. Fernando and Y. Chen , Department of Plant Science, University of Manitoba, Winnipeg, MB R3T 2N2, Canada



Go to article:
Accepted for publication 23 July 2003.

Blackleg, caused by Leptosphaeria maculans (Desmaz.) Ces. & De Not. (anamorph = Phoma lingam) (Tode:Fr.) Desmaz.), is an economically important and serious disease of canola (Brassica napus L.) in Australia, Europe, and Canada. L. maculans isolates can be categorized into four pathogenicity groups (PGs) on the basis of the interaction phenotypes (IP) on the differential canola cvs. Westar, Glacier, and Quinta (1) by using a standard screening protocol in the greenhouse. PG1 isolates are weakly virulent and PG2, PG3, and PG4 isolates are highly virulent. In Manitoba, L. maculans population consists mainly of PG2 (virulent on cv. Westar; avirulent on cvs. Glacier and Quinta) and a few PG1 isolates (avirulent on all three differentials). The Oilseed Pathology Lab in the Department of Plant Science, University of Manitoba examines the pathogenic variability of blackleg isolates obtained from Manitoba each year. In 2002, the blackleg-resistant cv. Q2, was found to be severely infected in Roland, Manitoba. The canola stubble collected from a coop trial plot (Roland, Manitoba) and a farm in East Selkirk (60 km northeast of Winnipeg, Manitoba) was isolated for the blackleg fungus. Small pieces of stubble were cut from the pseudothecia forming section and surface sterilized with 1% sodium hypochlorite solution for 3 to 5 min and then rinsed in sterile distilled water. V8 agar medium containing 1% streptomycin sulphate was used to culture the isolates under continuous cool-white fluorescent light for 14 days. Pure cultures of the pathogen were isolated and characterized as L. maculans by means of colony morphology, pycnidia, and microscopic observations of pycnidiospores. Pycnidiospores that formed on V8 plates were flooded with 10 ml of sterile distilled water and then harvested by filtering through sterilized Miracloth and kept at -20°C. The isolates were passed once through cv. Westar to maintain their virulence. The PG test was performed with the three differential cultivars. Two additional cultivars, Q2 (resistant to PG2 isolates) and Defender (moderately resistant to PG2 isolates), were included for comparisons. Twelve 7-day-old cotyledons of each differential cultivar grown in Metro Mix were wound inoculated with a 10-μl droplet of pycnidiospore suspension (1 × 107 pycnidiospores per ml). Inoculated cotyledons were maintained in the greenhouse (16/21°C night/day and a 16-h photoperiod). The experiment was repeated twice. Disease severity on cotyledons was assessed 12 days postinoculation by using a 0 to 9 scale (2). All five isolates from Roland and East Selkirk were highly virulent on Glacier (6.4 to 7.7), Q2 (7.1 to 8.2), and Defender (7.2 to 8.4), but intermediately virulent on Quinta (4.5 to 5.4). This clearly indicated that these isolates were of PG3. Isolates of PG2 have been predominant in Manitoba for the past 25 years, and highly virulent isolates belonging to PG3 had not been detected previously. To our knowledge, this is the first report of the presence of PG3 in L. maculans in Manitoba.

References: (1) A. Mengistu et al. Plant Dis. 75:1279, 1991. (2) P. H. Williams. Crucifer Genetics Cooperatives (CrGC) Resource Book, University of Wisconsin—Madison, 1985.



© 2003 The American Phytopathological Society