Link to home

Host Range and Alternate Host of a Puccinia coronata Population from Smooth Brome Grass

May 2001 , Volume 85 , Number  5
Pages  513 - 516

N. J. Delgado , Department of Agronomy ; C. R. Grau , Department of Plant Pathology ; and M. D. Casler , Department of Agronomy, University of Wisconsin, Madison 53706



Go to article:
Accepted for publication 31 January 2001.
ABSTRACT

A rust fungus was observed on smooth brome grass (Bromus inermis Leyss.) leaves growing in the fields of the University of Wisconsin (UW) Agricultural Research Station at Arlington, WI. The population (WPc-95A) was classified as Puccinia coronata Corda. Reports of P. coronata on B. inermis are rare, so a study of the pathogen host range, alternate host, and morphology of urediniospores and teliospores was undertaken. Fourteen grass species representing 10 genera were inoculated with P. coronata WPc-95A, which was maintained with repeated inoculations on B. inermis cv. PL-BDR1. Seventy-two 30-day-old seedlings of B. inermis were inoculated with urediniospores of the fungus. Infection type, pustule density, and disease incidence were recorded 15 days after inoculation. The same grass cultivars were also inoculated with aecio-spores collected from Rhamnus cathartica L. located on the UW campus. To test for host specificity, urediniospores produced on aeciospore-susceptible grass species were used to reinoculate plants of B. inermis and the host species from which the urediniospores were derived. B. inermis, B. riparius Rehm., Festuca pratensis Huds., and Lolium perenne L. were susceptible to P. coronata WPc-95A. The two Bromus spp. had the highest disease incidence. R. cathartica was found to be an alternate host of P. coronata WPc-95A, as it is for P. coronata isolates found on F. pratensis. However, cross-inoculations with urediniospores from R. cathartica-derived aeciospore infections indicated that only urediniospores of B. inermis origin were capable of infecting B. inermis. Thus, P. coronata WPc-95A appears to belong to a forma speciales previously undescribed in North America.



© 2001 The American Phytopathological Society