Link to home

Detection of Virulence to Wheat Stem Rust Resistance Gene Sr31 in Puccinia graminis. f. sp. tritici in Uganda

February 2000 , Volume 84 , Number  2
Pages  203.2 - 203.2

Z. A. Pretorius , Department of Plant Pathology, University of the Orange Free State, Bloemfontein 9300, South Africa ; R. P. Singh , CIMMYT, Lisboa 27, Apdo. Postal 6-641, Mexico D.F., Mexico ; W. W. Wagoire , NAARI, P.O. Box 7084, Kampala, Uganda ; and T. S. Payne , CIMMYT, P.O. Box 5689, Addis Ababa, Ethiopia



Go to article:
Accepted for publication 8 December 1999.

In much of the world, resistance to stem rust in wheat, caused by Puccinia graminis f. sp. tritici, is based at least in part on the gene Sr31. During February 1999, high levels of stem rust infection were observed on entries in wheat (Triticum aestivum) grown in a nursery at Kalengyere Research Station in Uganda. Because several of the rusted entries were known to carry the 1BL-1RS chromosome translocation containing the Sr31, Lr26, and Yr9 genes for rust resistance, virulence to Sr31 was suspected. Urediniospores, collected in bulk from rusted stems of seven entries containing Sr31, were suspended in light mineral oil and sprayed on primary leaves of 7-day-old seedlings of South African wheat cv. Gamtoos (=Veery #3, pedigree: Kvz/Buho‘S’//Kal/BB). Plants were kept overnight at 19 to 21°C in a dew chamber before placement in a greenhouse at 18 to 25°C. After ≈14 days, urediniospores were collected from large, susceptible-type stem rust pustules and subsequently increased on Gamtoos, which served as a selective host for the new rust culture, designated Pgt-Ug99. Pathogenicity of Pgt-Ug99 was studied in seedling tests of available wheats containing Sr31, as well as other stem rust differential lines. All seedling tests were conducted at least three times in independent inoculations. Isolate Pgt-Ug99 was not virulent to Avocet‘S’/Yr9 (Australian line containing Sr26) or Oom Charl (South African cultivar) but was virulent to the other Sr31 testers: Alondra ‘S’, Bobwhite, Chokka, Clement, Federation/Kavkaz, Gamtoos, Grebe, Kavkaz, Letaba, Line E/Kavkaz, RL6078, and Veery ‘S’. Virulence to Sr31 (infection types [ITs] 3-3 to 3++4) was clearly contrasted by the low reactions (ITs 0; to 1) produced by UVPgt53, a South African pathotype avirulent to Sr31. According to the reactions of the differential lines, Pgt-Ug99 is avirulent to Sr21, -22, -24, -25, -26, -27, -29, -32, -33, -34, -35, -36, -39, -40, -42, and -43, Agi, and Em and virulent to Sr5, -6, -7b, -8a, -8b, -9b, -9e, -9g, -11, -15, -17, -30, -31, and -38. Virulence to the T. ventricosum-derived gene Sr38, which is linked to Lr37 and Yr17 and occurs in cultivars from Australia, the United Kingdom, and the United States, was not known previously (1). Both Pgt-Ug99 and UVPgt53 produced a continuum of ITs (; to 2+3) on Petkus rye (obtained from the USDA-ARS National Small Grains Collection, Aberdeen, ID), the original Sr31 donor source. Pgt-Ug99 did not appear more virulent than UVPgt53 on Petkus. All triticales tested, as well as oat cv. Overberg, were highly resistant to Pgt-Ug99. According to McIntosh et al. (1), Huerta-Espino mentioned a Sr31-virulent culture from Turkey, but this could not be confirmed. Should the Sr31-virulent pathotype migrate out of Uganda, it poses a major threat to wheat production in countries where the leading cultivars have resistance based on this gene.

Reference: (1) R. A. McIntosh et al. 1995. Wheat Rusts: An Atlas of Resistance Genes. Kluwer Academic Publishers, Dordrecht, the Netherlands.



© 2000 The American Phytopathological Society