Link to home

Quantifying the Effects of Fusarium Head Blight on Grain Yield and Test Weight in Soft Red Winter Wheat

March 2015 , Volume 105 , Number  3
Pages  295 - 306

Jorge David Salgado, Laurence V. Madden, and Pierce A. Paul

Department of Plant Pathology, The Ohio State University, Ohio Agricultural Research and Development Center, Wooster 44691.

Go to article:
Accepted for publication 3 October 2014.

Fusarium head blight (FHB), caused by the fungus Fusarium graminearum, is known to negatively affect wheat grain yield (YLD) and test weight (TW). However, very little emphasis has been placed on formally quantifying FHB–YLD and FHB–TW relationships. Field plots of three soft red winter wheat cultivars—‘Cooper’ (susceptible to FHB), ‘Hopewell’ (susceptible), and ‘Truman’ (moderately resistant)—were grown during the 2009, 2010, 2011, and 2012 seasons, and spray inoculated with spore suspensions of F. graminearum and Parastagonospora nodorum to generate a range of FHB and Stagonospora leaf blotch (SLB) levels. FHB index (IND) and SLB were quantified as percent diseased spike and flag leaf area, respectively, and YLD (kg ha−1) and TW (kg m−3) data were collected. Using IND as a continuous covariate and cultivar (CV) and SLB as categorical fixed effects, linear mixed-model regression analyses (LMMR) were used to model the IND–YLD and IND–TW relationship and to determine whether these relationships were influenced by CV and SLB. The final models fitted to the data were of the generic form y = a + b (IND), where a (intercept) or b (slope) could also depend on other factors. LMMR analyses were also used to estimate a and b by combining the studies from these 4 years with an additional 16 experiments conducted from 2003 to 2013, and bivariate random-effects meta-analysis was used to estimate population mean b () and a (ā) for the IND–YLD relationship. YLD and TW decreased as IND increased, with b ranging from −3.2 to −2.3 kg m−3 %−1 for TW. For the IND–YLD relationship, was −51.7 kg ha−1 %IND−1 and ā was 4,426.7 kg ha−1. Neither cultivar nor SLB affected the IND–YLD relationship but SLB affected a of the IND–TW regression lines, whereas cultivar affected b. Plots with the highest levels of SLB (based on ordinal categories for SLB) had the lowest a and Hopewell had the highest b. The level of IND at which a 50-kg m−3 reduction in TW was predicted to occur was 19, 16, and 22% for Cooper, Hopewell, and Truman, respectively. A yield loss of 1 MT ha−1 was predicted to occur at 19% IND. The rate of reduction in relative TW or YLD per unit increase in IND was between −0.39 and −0.32%−1 for TW and −1.17%−1 for YLD. Results from this study could be integrated into more general models to evaluate the economics of FHB management strategies.

© 2015 The American Phytopathological Society