Link to home

Mapping Quantitative Trait Loci for Resistance to Rice Blast

February 2011 , Volume 101 , Number  2
Pages  176 - 181

Y. Jia and G. Liu

First author: U.S. Department of Agriculture-Agricultural Research Service (USDA-ARS), Dale Bumpers National Rice Research Center (DB NRRC), Stuttgart, AR 72160; and second author: Rice Research and Extension Center, University of Arkansas, Stuttgart, AR 72160.

Go to article:
Accepted for publication 20 September 2010.

Quantitative trait loci (QTLs) conferring resistance to rice blast, caused by Magnaporthe oryzae, have been under-explored. In the present study, composite interval mapping was used to identify the QTLs that condition resistance to the 6 out of the 12 common races (IB1, IB45, IB49, IB54, IC17, and ID1) of M. oryzae using a recombinant inbred line (RIL) population derived from a cross of the moderately susceptible japonica cultivar Lemont with the moderately resistant indica cultivar Jasmine 85. Disease reactions of 227 F7 RILs were determined using a category scale of ratings from 0, representing the most resistant, to 5, representing the most susceptible. A total of nine QTLs responsive to different degrees of phenotypic variation ranging from 5.17 to 26.53% were mapped on chromosomes 3, 8, 9, 11, and 12: qBLAST3 at 1.9 centimorgans (cM) to simple sequence repeat (SSR) marker RM282 on chromosome 3 to IB45 accounting for 5.17%; qBLAST8.1 co-segregated with SSR marker RM1148 to IB49 accounting for 6.69%, qBLAST8.2 at 0.1 cM to SSR marker RM72 to IC17 on chromosome 8 accounting for 7.22%; qBLAST9.1 at 0.1 cM to SSR marker RM257 to IB54, qBLAST9.2 at 2.1 cM to SSR marker RM108, and qBLAST9.3 at 0.1 cM to SSR marker RM215 to IC17 on chromosome 9 accounting for 4.64, 7.62, and 4.49%; qBLAST11 at 2.2 cM to SSR marker RM244 to IB45 and IB54 on chromosome 11 accounting for 26.53 and 19.60%; qBLAST12.1 at 0.3 cM to SSR marker OSM89 to IB1 on chromosome 12 accounting for 5.44%; and qBLAST12.2 at 0.3 and 0.1 cM to SSR marker OSM89 to IB49 and ID1 on chromosome 12 accounting for 9.7 and 10.18% of phenotypic variation, respectively. This study demonstrates the usefulness of tagging blast QTLs using physiological races by composite interval mapping.

Additional keywords: infection type.

This article is in the public domain and not copyrightable. It may be freely reprinted with customary crediting of the source. The American Phytopathological Society, 2011.