Link to home

Spatiotemporal Colonization of Xylella fastidiosa in its Vector Supports the Role of Egestion in the Inoculation Mechanism of Foregut-Borne Plant Pathogens

August 2011 , Volume 101 , Number  8
Pages  912 - 922

Elaine A. Backus and David J. W. Morgan

First author: United States Department of Agriculture–Agricultural Research Service, San Joaquin Valley Agricultural Sciences Center, 9611 So. Riverbend Ave, Parlier, CA 93648; and second author: California Department of Food and Agriculture, Mt. Rubidoux Field Station, 4500 Glenwood Dr., Bldg. E, Riverside, CA 92501.


Go to article:
Accepted for publication 18 March 2011.
ABSTRACT

The pathogen that causes Pierce's disease of grapevine, Xylella fastidiosa, is the only known bacterial, arthropod-transmitted plant pathogen that does not circulate in the vector's hemolymph. Instead, bacteria are foregut-borne, persistent in adult vectors but semipersistent in immatures (i.e., bacteria colonize cuticular surfaces of the anterior foregut, are retained for hours to days, but are lost during molting). Yet, exactly how a sharpshooter vector inoculates bacteria from foregut acquisition sites is unknown. The present study used confocal laser-scanning microscopy to identify locations in undissected, anterior foreguts of the glassy-winged sharpshooter colonized by green fluorescent protein-expressing X. fastidiosa. Spatial and temporal distributions of colonizing X. fastidiosa were examined daily over acquisition access periods of 1 to 6 days for both contaminated field-collected and clean laboratory-reared Homalodisca vitripennis. Results provide the first direct, empirical evidence that established populations of X. fastidiosa can disappear from vector foreguts over time. When combined with existing knowledge on behavior, physiology, and functional anatomy of sharpshooter feeding, present results support the idea that the disappearance is caused by outward fluid flow (egestion) not inward flow (ingestion) (i.e., swallowing). Thus, results support the hypothesis that egestion is a critical part of the X. fastidiosa inoculation mechanism. Furthermore, results suggest a cyclical, spatiotemporal pattern of microbial colonization, disappearance, and recolonization in the precibarium. Colonization patterns also support two types of egestion, termed rinsing and discharging egestion herein. Finally, comparison of acquisition results for field-collected versus laboratory-reared sharpshooters suggest that there may be competitive binding for optimum acquisition sites in the foregut. Therefore, successful inoculation of X. fastidiosa may depend, in large part, on vector load in the precibarium.


Additional keywords: microbial competition, transmission mechanism.

This article is in the public domain and not copyrightable. It may be freely reprinted with customary crediting of the source. The American Phytopathological Society, 2011.