Link to home

The Importance of Phenolic Metabolism to Limit the Growth of Phakopsora pachyrhizi

December 2009 , Volume 99 , Number  12
Pages  1,412 - 1,420

Anatoliy V. Lygin, Shuxian Li, Ramya Vittal, Jack M. Widholm, Glen L. Hartman, and Vera V. Lozovaya

First, third, fourth, and sixth authors: Crop Sciences Department, University of Illinois at Urbana-Champaign, 1201 W. Gregory Dr., Urbana 61801; second author: United States Department of Agriculture--Agricultural Research Service (USDA-ARS), Crop Genetics & Production Research Unit, Stoneville, MS 38776; and fifth author: USDA-ARS and Department of Crop Sciences, University of Illinois, 1101 W. Peabody Dr., Urbana 61801.


Go to article:
Accepted for publication 13 June 2009.
ABSTRACT

Understanding the metabolic responses of the plant to a devastating foliar disease, soybean rust, caused by Phakopsora pachyrhizi, will assist in development of cultivars resistant to soybean rust. In this study, differences in phenolic metabolism were analyzed between inoculated and noninoculated plants using two susceptible and three resistant soybean genotypes with known resistance genes. Rust infection resulted in increased accumulation of isoflavonoids and flavonoids in leaves of all soybean genotypes tested. Although the soybean phytoalexin glyceollin was not detected in leaves of uninfected plants, accumulation of this compound at marked levels occurred in rust-infected leaves, being substantially higher in genotypes with a red-brown resistant reaction. In addition, there was inhibition of P. pachyrhizi spore germination by glyceollin, formononetin, quercetin, and kaempferol. However, there was no correlation between concentrations of flavonoids quercetin and kaempferol and rust-induced isoflavonoid formononetin in soybean leaves and rust resistance. Lignin synthesis also increased in all inoculated soybean genotypes whereas there was no significant difference in all noninoculated soybean genotypes. Cell wall lignification was markedly higher in inoculated resistant lines compared with inoculated susceptible lines, indicating a possible protective role of lignin in rust infection development.



© 2009 The American Phytopathological Society