Link to home

Post-Anthesis Moisture Increased Fusarium Head Blight and Deoxynivalenol Levels in North Carolina Winter Wheat

April 2009 , Volume 99 , Number  4
Pages  320 - 327

Christina Cowger, Jennifer Patton-Özkurt, Gina Brown-Guedira, and Leandro Perugini

First and second authors: United States Department of Agriculture--Agricultural Research Service (USDA-ARS), Department of Plant Pathology, and third author: USDA-ARS, Department of Crop Science, North Carolina State University, Raleigh, NC 27695; and fourth author: Pioneer Hi-Bred, 985 County Road 300 E., Ivesdale, IL 61851.

Go to article:
Accepted for publication 29 December 2008.

Current models for forecasting Fusarium head blight (FHB) and deoxynivalenol (DON) levels in wheat are based on weather near anthesis, and breeding for resistance to FHB pathogens often relies on irrigation before and shortly after anthesis to encourage disease development. The effects of post-anthesis environmental conditions on FHB are poorly understood. We performed a field experiment at Kinston, NC, to explore the effects of increasing duration of post-anthesis moisture on disease incidence, disease severity, Fusarium-damaged kernels (FDK), percent infected kernels, and DON. The experiment had a split-plot design, and one trial was conducted in each of two successive years. Main plots consisted of post-anthesis mist durations of 0, 10, 20, or 30 days. Subplots were of eight cultivars in the first year and seven in the second year, two being susceptible to FHB and the remainder each with varying degrees of apparent type I and type II resistance. Plots were inoculated by spraying Fusarium graminearum macroconidia at mid-anthesis. Averaging across years and cultivars, 10 or 20 days of post-anthesis mist had the same effect (P ≥ 0.198) and were associated with an approximately fourfold increase in mean disease incidence and eightfold increase in disease severity compared with 0 days of mist (P ≤ 0.0002). In both years, mean FDK percentages at 0 and 10 days post-anthesis mist were the same and significantly lower than FDK percentages under 20 or 30 days of post-anthesis mist. Mist duration had a significant effect on percent kernels infected with Fusarium spp. as detected by a selective medium assay of 2007 samples. Averaging across all cultivars, in both years, DON levels increased significantly for 10 days compared with 0 days of mist, and increased again with 20 days of mist (P ≤ 0.04). This is the first investigation to show that extended post-flowering moisture can have a significant enhancing effect on FHB, FDK, DON, and percent infected kernels of wheat. For all disease and toxin assays, cultivar rankings were significantly noncorrelated among mist durations in at least 1 year, suggesting that FHB screening programs might rank genotypes differently under extended post-anthesis moisture than without it. Our findings also imply that accurate forecasts of DON in small grains must take account of post-anthesis weather conditions.

Additional keywords:Gibberella zeae.

The American Phytopathological Society, 2009