Link to home

Host Crop Affects Rhizosphere Colonization and Competitiveness of 2,4-Diacetylphloroglucinol-Producing Pseudomonas fluorescens

July 2006 , Volume 96 , Number  7
Pages  751 - 762

Leonardo De La Fuente , Blanca B. Landa , and David M. Weller

First author: Department of Plant Pathology, Washington State University, Pullman 99164; second author: Departamento de Agronomía, Escuela Técnica Superior de Ingenieros Agrónomos y de Montes, Universidad de Córdoba, 14080 Córdoba, Spain; and third author: United States Department of Agriculture, Agricultural Research Service, Root Disease and Biological Control Research Unit, Pullman, WA 99164

Go to article:
Accepted for publication 28 February 2006.

Strains of Pseudomonas fluorescens producing the antibiotic 2,4-diacetylphloroglucinol (2,4-DAPG) are biocontrol agents which play a key role in the suppressiveness of some soils against soilborne pathogens. We evaluated the effect of the host plant genotype on rhizosphere colonization by both indigenous and introduced 2,4-DAPG-producing P. fluorescens. First, population densities of indigenous 2,4-DAPG producers in the rhizospheres of alfalfa, barley, bean, flax, lentil, lupine, oat, pea, and wheat grown in a Fusarium wilt-suppressive Puget silt loam were determined. Population densities differed among the various crops and among pea cultivars, with lentil and oat supporting the highest and lowest densities of 2,4-DAPG producers, respectively. Second, to determine the interactions among 2,4-DAPG producers in the rhizosphere, a Shano sandy loam was inoculated individually and with all possible combinations of P. fluorescens Q8r1-96 (genotype D), F113 (genotype K), and MVP1-4 (genotype P) and sown to wheat or pea, and the rhizosphere population dynamics of each strain was monitored. All three strains were similar in ability to colonize the rhizosphere of wheat and pea when introduced alone into the soil; however, when introduced together in equal densities, the outcome of the interactions differed according to the host crop. In the wheat rhizosphere, the population density of strain F113 was significantly greater than that of Q8r1-96 in the mixed inoculation studies, but no significant differences were observed on pea. The population density of strain Q8r1-96 was greater than that of MVP1-4 in the mixed inoculation on wheat, but the opposite occurred on pea. In the wheat rhizosphere, the population of MVP1-4 dropped below the detection limit (log 3.26 CFU g-1 of root) in the presence of F113; however, on pea, the population density of MVP1-4 was higher than that of F113. When all three strains were present together, F113 had the greatest density in the wheat rhizosphere, but MVP1-4 was dominant in the pea rhizosphere. Finally, eight pea cultivars were grown in soil inoculated with either MVP1-4 or Q8r1-96. The effect of the pea cultivar on rhizosphere colonization was dependent on the bacterial strain inoculated. Rhizosphere population densities of MVP1-4 did not differ significantly among pea cultivars, whereas population densities of Q8r1-96 did. We conclude from these studies that the host crop plays a key role in modulating both rhizosphere colonization by 2,4-DAPG-producing P. fluorescens and the interactions among different genotypes present in the same rhizosphere.

Additional keywords: fluorescent pseudomonads, rhizosphere competitiveness, suppressive soils.

© 2006 The American Phytopathological Society