Link to home

Ultrastructure of the Penetration and Infection of Pansy Roots by Thielaviopsis basicola

August 2000 , Volume 90 , Number  8
Pages  843 - 850

Charles W. Mims , Warren E. Copes , and Elizabeth A. Richardson

First author: Department of Plant Pathology, University of Georgia, Athens 30602; second author: Department of Plant Pathology, Washington State University, Puyallup 98371; third author: Department of Botany, University of Georgia, Athens 30602

Go to article:
Accepted for publication 1 May 2000.

Transmission electron microscopy was used to study the penetration and infection of pansy roots by Thielaviopsis basicola. Events observed in 7- to 10-day-old roots produced on moist filter paper differed slightly from those in roots from 4-week-old plants washed free of potting media prior to inoculation. By 3 h postinoculation (PI), epidermal cells of roots produced on filter paper exhibited aggregated cytoplasm and papilla formation in response to germ tube tips. The presence of callose in papillae was demonstrated using immunogold labeling. Papilla formation was not effective in preventing host cell penetration. A slender infection hypha emerged from a germ tube tip and grew through a papilla. Its tip then expanded to form a globose infection vesicle. By 6 h PI, infection hyphae emerged from infection vesicles, and invaded host cells showed signs of necrosis. By 8 h PI, infection hyphae had grown into cortical cells in spite of papilla formation in these cells. By 24 h PI, distinctive intracellular hyphae were present in necrotic cortical cells. In washed roots, most epidermal cells failed to respond to invasion. Hyphae simply grew through these cells and contacted cortical cells that exhibited aggregated cytoplasm and papillae formation. Infection structures similar to those produced in epidermal cells from roots grown on filter paper then formed in cortical cells of washed roots. The fact that T. basicola formed infection structures only in cells that responded to invasion suggests that T. basicola has a more complex relationship with its host than would be expected in a nectrotrophic pathogen. We believe that T. basicola is best described as a necrotrophic hemibiotroph.

Additional keywords: host-pathogen relationship.

© 2000 The American Phytopathological Society