Link to home

Evolutionary Diversity of Symbiotically Induced Nodule MADS Box Genes: Characterization of nmhC5, a Member of a Novel Subfamily

July 1997 , Volume 10 , Number  5
Pages  665 - 676

Jacqueline Heard , Michal Caspi , and Kathleen Dunn

Department of Biology, Boston College, Chestnut Hill, MA 02167, U.S.A.

Go to article:
Accepted 21 March 1997.

Unique organs called nodules form on legume roots in response to intracellular infection by soil bacteria in the genus Rhizobium. This study describes a new MADS box gene, nmhC5, which along with nmh7 (J. Heard and K. Dunn, Proc. Natl. Acad. Sci. USA 92:5273-5277, 1995), is expressed in alfalfa (Medicago sativa) root nodules. Together, these genes represent the first putative transcription factors identified in nodules. Expression in a root-derived structure supports the growing sentiment that MADS box proteins have diverse roles in plant development. Comparison of the putative translation product of nmhC5 with those of other reported members of the MADS box family suggests that the overall structure of nmhC5 is conserved. Evolutionary analysis among the MADS box family showed that nmhC5 is orthologous to a root-expressed clone in Arabidopsis thaliana, agl17, and that nmh7 is similar to the floral subfamily with AP3 (DefA)/PI (Glo). Consistent with a prediction of homodimer formation, NMHC5 was shown to bind a CArG consensus sequence in vitro. In contrast, NMH7, which shows structural similarity to MADS box proteins that form heterodimers, did not bind the CArG element in an in vitro DNA-binding assay, suggesting the existence of an unknown dimer partner. The root-derived MADS box genes constitute a novel subfamily of vegetatively expressed MADS box genes. The evolutionary diversity between nmh7 and nmhC5 could represent an overall mechanistic conservation between plant developmental processes or could mean that nmh7 and nmhC5 make fundamentally different contributions to the development of the nodule.

© 1997 The American Phytopathological Society