Link to home

First Report of Impatiens necrotic spot virus Infecting Greenhouse-Grown Potatoes in Washington State

December 2010 , Volume 94 , Number  12
Pages  1,507.1 - 1,507.1

J. M. Crosslin, USDA-ARS, Vegetable and Forage Crops Research Unit, Prosser, WA 99350; and L. L. Hamlin, Washington State University, Irrigated Agriculture Research and Extension Center, Prosser 99350



Go to article:
Accepted for publication 4 September 2010.

In April and May 2010, leaves on approximately one-half of 200 potato (Solanum tuberosum L. cv. Atlantic) plants, 20 to 25 cm high, grown from prenuclear minitubers in greenhouses located at the USDA-ARS facility in Prosser, WA exhibited necrotic spots similar to those produced by the early blight pathogen, Alternaria solani. Fungicide sprays did not reduce incidence of the symptoms. Observations associated the symptoms with thrips feeding damage so plants were tested for Tomato spotted wilt virus (TSWV) and Impatiens necrotic spot virus (INSV) with ImmunoStrips from Agdia, Inc (Elkhart, IN). Three of three, two of two, and two of two symptomatic plants from three greenhouses were positive for INSV and negative for TSWV. Two symptomless plants tested negative. Four of four symptomatic and zero of two symptomless plants were positive by reverse transcription (RT)-PCR with INSV specific primers (forward: 5′ TAACACAACACAAAGCAAACC 3′ and reverse: 5′ CCAAATACTACTTTAACCGCA 3′) (4). The 906-bp amplicon from one sample was cloned and three clones were sequenced. The three clones were 99.7% identical, and BLAST analysis of the consensus sequence (GenBank Accession No. HM802206) showed 99% identity to INSV accessions D00914 and X66972, and 98% identity to other INSV isolates. The isolate, designated INSV pot 1, was mechanically inoculated to one plant of potato cv. GemStar and produced local, spreading necrotic lesions. The virus did not go systemic, as determined by RT-PCR of upper leaves 30 days after inoculation. The local necrotic lesions on GemStar were positive for INSV by ImmunoStrips and RT-PCR. The original source of the INSV inoculum is unknown. However, hairy nightshade (Solanum sarrachoides Sendtn.) and plantain (Plantago major L.) weeds in an ornamental planting near one of the affected greenhouses tested positive for INSV by ImmunoStrips. The nightshade showed obvious thrips feeding damage but no obvious virus symptoms while the plantain showed less thrips feeding damage but distinct necrotic rings. Subsequently, two of two symptomatic potato plants of cv. Desiree in another greenhouse near the initial site tested INSV positive with the ImmunoStrips. In addition to the necrotic lesions on leaves observed in cv. Atlantic, these plants also showed necrosis of petioles and stems. INSV is transmitted by a number of species of thrips, but the western flower thrips (Frankliniella occidentalis Perg.) is considered the most important under greenhouse conditions. The species of thrips in the affected greenhouses was not determined before all materials were discarded. Both INSV and the thrips vector have large host ranges including many crops and weeds, and have become increasingly important in recent years (1,2). INSV was reported on greenhouse-grown potatoes in New York in 2005 (3). These findings indicate INSV can be a major problem in greenhouse potatoes, whether for research purposes or production of virus-free minitubers destined for field plantings.

References: (1) M. L. Daughtrey et al. Plant Dis. 81:1220, 1997. (2) R. A. Naidu et al. Online publication. doi:10.1094/PHP-2005-0727-01-HN, Plant Health Progress, 2005. (3) K. L. Perry et al. Plant Dis. 89:340, 2005. (4) K. Tanina et al. Jpn. J. Phytopathol. 67:42, 2001.

ERRATUM: A correction was made to this Disease Note on September 7, 2012. The forward and reverse INSV specific primer sequences were corrected.



© 2010 The American Phytopathological Society