Link to home

First Report of Sclerotinia sclerotiorum on Argyranthemum frutescens in Italy

August 2008 , Volume 92 , Number  8
Pages  1,250.3 - 1,250.3

A. Garibaldi, P. Pensa, and M. L. Gullino, Centre of Competence for the Innovation in the Agro-Environmental Sector (AGROINNOVA) Via Leonardo da Vinci 44, 10095 Grugliasco, Italy



Go to article:
Accepted for publication 21 May 2008.

Paris daisy (Argyranthemum frutescens (L.) Sch. Bip.) is an economically important crop on the Riviera Ligure (northern Italy), where approximately 10 million plants per year are produced for export. In the winter of 2007, extensive wilting was observed on 5-month-old potted plants of A. frutescens grown in a commercial greenhouse near Albenga. First symptoms included stem necrosis, darkening and withering of leaves, and wilting of young buds. As stem and foliar necrosis progressed, infected plants wilted and died. Wilt occurred a few days after the appearance of the first symptoms. Infected plants were characterized by the presence of soft, watery tissues. Lesions became covered with a whitish mycelium and dark sclerotia were produced on the mycelium. Diseased stem tissue was surface sterilized for 1 min in 1% NaOCl and plated on potato dextrose agar (PDA) amended with 100 mg/l streptomycin sulfate. Sclerotinia sclerotiorum (Lib.) de Bary (2) was consistently recovered from infected stem pieces. Sclerotia produced on PDA measured 1.4 to 5.2 × 2.3 to 6.7 (average 3.3 to 4.2) mm. The internal transcribed spacer (ITS) region of rDNA was amplified using primers ITS4/ITS6 and then sequenced. BLAST analysis (1) of the 531-bp segment showed a 100% homology with the sequence of S. sclerotiorum. The nucleotide sequence has been assigned GenBank Accession No. EU 556701. Pathogenicity of two isolates obtained from infected plants was confirmed by inoculating 10 90-day-old plants for each isolate. Plants were grown singly in 18-cm-diameter pots maintained in a greenhouse under shade and were regularly irrigated and fertilized. Mycelium plugs 1 cm2 were excised from a 10-day-old PDA culture of both isolates and placed on the soil surface around the base of each plant. Ten noninoculated plants served as controls. Plants were maintained in a greenhouse under shade at temperatures ranging between 6 and 22°C (average 18°C) and relative humidity at >90%. The inoculation trial was carried out twice. All inoculated plants developed leaf yellowing by 22 days after inoculation. White, cottony mycelium and black sclerotia developed on stems and at the base of all inoculated plants. Eventually, infected plants wilted. Control plants remained symptomless. S. sclerotiorum was reisolated from the stems of inoculated plants. To our knowledge, this is the first report of S. sclerotiorum causing white mold on A. frutescens in Italy as well as worldwide. The economic importance of this disease can be considered limited at the moment.

References: (1) S. F. Altschul et al. Nucleic Acids Res. 25:3389, 1997 (2) N. F. Buchwald. Kongl. Veterisk Landb. Aarssk. 75, 1949.



© 2008 The American Phytopathological Society