
Almost 50% of the variation in rate increase in incidence of wheat glume blotch is due to weather factors and about 50% to biological factors, report A. Djurie and associates at the Swedish University of Agricultural Sciences and Uppsala University, Uppsala, Sweden. (Eur. J. Plant Pathol. 102:9-20, 1996)


Toxic extracellular polysaccharides from Xanthomonas campestris caused the browning, necrosis, and yellowing of pepper leaves, according to C. M. Walkes and L. W. O’Garro of the University of West Indies, Bridgetown, Barbados. (Physiol. Mol. Plant Pathol. 48:91-104, 1996)


The polymerase chain reaction was effective in detecting latent infection by Clavibacter michiganensis in tomato seedlings before they are transplanted, according to R. Ghedini and N. Fiore of the University of Bologna, Bologna, Italy. (EFPO Bull. 25:449-454, 1995)

Betertanol at 19 mg per kg of seed effectively controlled seed-borne inoculum and 56 mg per kg of seed was effective for soilborne inoculum of Tilletia caries on winter wheat, reports L. Johnsson of the Swedish University of Agricultural Sciences, Uppsala. (Växtskyddsnotiser 59[4]:107-110, 1995)


Of 11 fungicides tested for control of Diaporthe phaseolorum and Phomopsis longicola soybean, those containing thiram, carbanthiin, benomyl, or captan were the most effective as seed treatments, report R. Hall and A. G. Xue of the University of Guelph, Ontario, and Agriculture and Agri-Food Canada, Morden, Manitoba, Canada. (Phytoprotection 76[2]:47-56, 1995)

Tomato infectious chlorosis virus is a new closterovirus on tomato transmitted in a semipersistent manner by the greenhouse whitefly and found by J. E. Duffus and associates at the US Agricultural Research Station, Salinas, CA. (Eur. J. Plant Pathol. 102:219-226, 1996)

Somacloinal celery lines resistant to Fusarium yellows were also more resistant to the beet armyworm, making these lines useful in integrated pest management programs, report M. M. Diawara and associates at the University of Colorado, Pueblo; University of California, Riverside; and Michigan State University, East Lansing. (J. Econ. Entomol. 89:218-223, 1996)