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Those Overworked and Oft-Misused Mean Separation Procedures—

Duncan’s, LSD, etc.

Mean separation or multiple com-
parison procedures are widely used in
analyzing scientific data, usually as
follow-up procedures after an analysis of
variance has been performed. Once a
significant Fhasindicated thata group of
treatment means are not all equal, one
naturally wishes to explore the treatment
differences further. One way this is often
done is with a mean separation
procedure, usually by making pairwise
comparisons of the treatment means in
question.

The mean separation procedures most
often used are Duncan’s and Newman-
Keuls’ multiple range tests, the LSD
(least significant difference), the HSD
(Tukey’s w or honestly significant
difference), and Waller-Duncan’s pro-
cedure (5). These procedures are used far
more often than they ought to be,
however. They are not all-purpose
procedures for comparing means indis-
criminately, nor were they ever intended
to be. When Petersen (4) scanned the
1975 volume of the Agronomy Journal,
he noted that 40% of the papers used a
mean separation procedure (usually
Duncan’s). He concluded that 409 of
those applications were “entirely
inappropriate,” 30% could have used a
more suitable analysis, and only 30%
used a mean separation procedure
appropriately. Despite a number of
papers on this subject (1-4), abuses of
these procedures are still very easy to
find.

So when is it inappropriate to use a
mean separation procedure? The answer
lies in considering the treatment design,
by which I mean the nature of the
treatments in the experiment and their
interrelationships. Mean separation
procedures were developed for cases
where the treatment set lacked structure,
that is, where the treatments were just a
collection of varieties or perhaps
chemicals with no particular inter-
relationships. Most treatment designs are
not of this type. Usually, the treatment set
has a structure, and the statistical analysis
should recognize that structure. When
that structure is ignored in the statistical
analysis, as it is when a mean separation
procedure is used to make all pairwise
comparisons, then the statistical analysis
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will not be the best (most pertinent)
analysis and may be entirely inappropriate.

The following examples provide a basis
for discussion of the most common
misapplications of mean separation
procedures. For verisimilitude, examples
I and 2 are closely based on misapplica-
tions published recently, but the data
have been altered to obviate citing
specific papers for abuses that are
widespread.

Example 1. Quantitative treatments.
Perhaps the most glaring abuse of a mean
separation procedure is using it on a
gradient treatment design, that is, a set of
treatments that are increasing “dosages”
of a quantitative factor. Examples of such
treatments include dosages or concentra-
tions of a chemical treatment, row
spacings, times of application, and
temperatures. That the levels or dosages
may be planned, not random, is seldom
relevant.

Table 1 illustrates a possible presenta-
tion associated with this misuse of a mean
separation procedure. To ask whether the
first treatment level differs from the
second, then from the third, then from the
fourth, etc., by making all pairwise
comparisons of means, asis done in Table
1, ignores the logic of the treatment
design. The focus of a gradient treatment
design is to investigate the *“dose-
response” relationship. To do that, one
should plot the response (Y) against the
treatment level (X) and look for an
equation describing the relationship
between Y and X. If theory suggests a
meaningful mathematical form for that
equation, then fitting an equation of that
form is preferable. Otherwise (usually),
one merely tries to find a simple equation
that fits the data reasonably well.
Polynomials are popular for their ease of
use and ability to fit a wide variety of
data. For this example, the quadratic
equation

Yield = 4,025.3 + 1,478.3gRustkill) -
349.8(Rustkill)

accounts for over 98% of the treatment
sum of squares. (A quadratic equation fit
the real data on which this example was
based even better!) This equation not
only provides a compact summary of the
dose-response relationship (over the
range of Rustkill rates in the data—
beware of extrapolation!), but also allows
prediction of wheat yield at treatment
levels not included in the data. For

example, for Rustkill applied at 1.15
kg/ha, the predicted wheat yield is 5,263
kg/ha. Having an equation for the dose-
response relationship also can be helpful
in estimating the point (threshold) at
which treatment becomes cost-effective
or the treatment level associated with a
maximum or minimum response.

So, for quantitative treatments,
estimating the dose-response relationship
(or, in higher dimensions, the response
surface) through curve fitting is appro-
priate. Pairwise comparison of the
treatment means is not likely to shed
much light on the dose-response
relationship. As Little (3) aptly noted,
“Perhaps it is fortunate that Galileo did
not have Duncan’s test at his disposal, for
he might have failed to come up with the
beautifully simple equation, v = gt.”

Example 2. Factorial experiments.
Factorial treatment designs are common
and are widely recommended for
experiments designed to investigate
possible interactions of factors. The
treatment set for a two-factor factorial
can be displayed in a two-way table (rows
and columns), highlighting the key point
that the treatments derive from a
“crossing” of the levels of factor A with
those of factor B; a k-factor factorial can
be displayed similarly with a k-way table.

The cross-classificational nature of a
factorial treatment design should not be
ignored in the statistical analysis. Thus,
with a factorial it is almost always wrong
to use a mean separation procedure on
the full set of treatments. That notwith-
standing, one often sees the sort of
analysis presented in Table 2. Only the
most astute reader will gain any
understanding of the main effects of the

Table 1. Example 1: Effect on wheat yield of
leaf rust treatment with different rates of
Rustkill'—a flawed analysis and presentation

Yield

Treatment and rate/ha (kg/ha)
Control (0 kg) 4,134 ¢’
Rustkill 25W 0.25 kg 4232 e
Rustkill 25W 0.50 kg 4,635d
Rustkill 25W 0.75 kg 4,965 ¢
Rustkill 25W 1.00 kg 5,199 b
Rustkill 25W 1.25 kg 5311b
Rustkill 25W 1.50 kg 5,505 a
Rustkill 25W 2.00 kg 5,551 a
LSD (P =0.05) 125

"Not real data.
“Means followed by the same letter are not
significantly different.
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nematicide and herbicide treatments and
of their interaction from this analysis
with Duncan’s test. Indeed, most readers
will fail even to recognize the factorial
nature of the treatment set.

For the same eight treatments, Table 3
makes the factorial treatment design
explicit and shows the appropriate
partitioning of the treatment sum of
squares (ie, that suggested by the
treatment design) into pieces reflecting
the effects of presence vs. absence of the
nematicide (rows), differential effects of
the herbicides including none (columns),
and the interaction of nematicide and
herbicide treatments. Over 99% of the
treatment sum of squares is attributable

Table 2. Example 2: Effect on new growth of
peach trees of nematicide and herbicide
treatments for Pratylenchus penetrans and
weeds’—a flawed analysis and presentation

Treatment New growth
and rates/acre (cm)
Control 55.9 cd”
Nemakill 15G (133 1b) 50.8 d
Goal 2E (1 gal) 180.8 a
Surflan 4AS (1 gal) 109.6 bc
Solicam 80W (5 1b) 137.1 ab
Nemakill 15G (133 1b)

+ Goal 2E (1 gal) 190.3 a
Nemakill 15G (133 1b)

+ Surflan 4AS (1 gal) 94.8 bed
Nemakill 15G (133 1b)

+ Solicam 80W (5 Ib) 137.9 ab

*Not real data.

“Means followed by the same letter are not
significantly different (P=0.05)accordingto
Duncan’s multiple range test.

to herbicide differences; the main effect
for nematicide and interaction are not
significant.

Although it was inappropriate to apply
any mean separation procedure to the full
factorial set of eight treatments, it does
seem appropriate to compare the four
herbicide treatments using a mean
separation procedure as done on the
column means in the two-way table of
Table 3. It seems appropriate because I
think the experimenter would want to
make all possible pairwise comparisons
of these four treatments (cf example 3).
The main effect (column) means are used
because there was no significant
interaction. If the interaction had been
significant, I would have compared the
four herbicide means within each level of
the other factor (ie, within each row of the
two-way table). In contrast to the
muddled message in Table 2, inferences
flow straightforwardly from Table 3:
Peach tree growth was unchanged with
use of Nemakill; all three herbicides
increased yield significantly but the
increase with Goal was significantly
greater than with either Surflan or
Solicam; there was no significant
interaction of the herbicide and nematicide
treatments. The power gained in
comparing herbicide treatments averaged
across nematicide treatments, exploiting
the factorial’s “hidden replication,”
separated Goal from Solicam, a difference
not evident in Table 2.

Example 3. Contrasts and preplanned
tests. Many treatment sets incorporate a
structure that strongly suggests the

Table 3. Example 2: Factorial structure and partitioning

Herbicide
Nematicide None Goal Surflan Solicam Mean
None 55.9 180.8 109.6 137.1 120.9
Nemakill 50.8 190.3 94.8 137.9 118.5
Mean 534a° 185.6 ¢ 102.2 b 137.5b

Source of variation

Sum of squares

Treatments
Nematicide
Herbicide
Interaction

18,891.2
11.5
18,723.3
156.5

“Herbicide means followed by a common letter are not significantly different (LSD = 39.4, P=0.05).

Table 4. Example 3: Treatments for corn seedlings infected with Diplodia spp. and implied

contrasts of interest

Treatments

A = untreated control

B,C = mercuric fungicides

D,H = nonmercuric fungicides, company I

E,F,G = nonmercuric fungicides, company II (F,G are newer formulations of E)

Implied contrasts

. Control vs. treated

. Mercuric vs. nonmercuric

. Comparing mercurics

Company I vs. company II

Comparing products, company I

Old vs. new formulations, company II

. Comparing new formulations, company II

No s LN =

(A vs. rest)

(B,C vs. D,E,F,G,H)
(Bvs. C)

(D,H vs. E,F,G)

(D vs. H)

(E vs. F,G)

(Fvs. G)
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treatments were selected with particular
comparisons in mind. Often the treatments
fall into natural subgroups that “cry out”
for comparison. Table 4 shows one such
treatment set from Steel and Torrie (5,
pp. 205-208) and the comparisons or
contrasts that follow naturally from the
treatment design. Using the method of
orthogonal contrasts, the sum of squares
for treatments with seven degrees of
freedom can be partitioned into single-
degree-of-freedom sums of squares to test
the seven pertinent questions listed in
Table 4; Steel and Torrie (5) provide the
details. Note that some of these contrasts
are not pairwise; for example, the second
compares a group of two treatments vs. a
group of five. Some of the mean
separation procedures can also do
nonpairwise comparisons, but they are
rarely used that way.

When relevant hypotheses follow from
the treatment design, as do the seven in
this example and as did the tests for main
effects and interaction in example 2, the
overall Ftestis not prerequisite, relevant,
or recommended. In fact, a nonsignificant
overall F may wrongly dissuade the
experimenter from testing the preplanned
hypotheses of interest; when most of the
treatments differ little, the overall F may
fail to detect that some differences do
exist.

It should be said that relevance is far
more important than orthogonality.
When the treatment design suggests
nonorthogonal contrasts, so be it. The
mathematical niceties of orthogonality
are far less important than extracting all
pertinent information from the data.

Whereas the misuses of mean separation
procedures illustrated in examples 1 and
2 seem to me incontrovertible, there is
more room for judgment in deciding what
is preplanned and should therefore be
tested with contrasts rather than a mean
separation procedure. I applied the LSD
to the four herbicide treatment means in
Table 3, feeling that the structure in that
group of four treatments was minimal.
Someone else might have argued that
Goal and Solicam were more similar to
each other (eg, in chemical structure and
mode of application) than to Surflan, so
one should instead have calculated three
contrasts: control vs. herbicide, Surflan
vs. Goal and Solicam, and Goal vs.
Solicam. At the extreme, there are
statisticians who argue that everything
should be viewed as preplanned; that if it
doesn’t seem so, it’s because the treatment
set was poorly designed. Those statisticians
would cheerfully dispense with mean
separation procedures altogether.

It could be said that real life is more
complicated than examples 1, 2, and 3—
that treatment sets are usually more
complex. That may well be true, but two
points come to mind. First, a more
complex set of treatments may mean that
the analysis will be more complex but
doesn’t void any of the arguments made



here. If 14 treatments include a 3 X 4
factorial set plus two miscellaneous
treatments, the factorial part should be
analyzed as a factorial. The presence of
odd treatments doesn’t convey license to
ignore the rest of the structure in the
treatment set and proceed with Duncan’s
test. And second, a hodgepodge treatment
set often suggests that the experimental
objectives were not well thought out.

In judging whether a mean separation
procedure has been used improperly,
experimental design is irrelevant. It is
immaterial whether the experiment was
runas a completely randomized design, a
randomized complete block design, or a
split plot design. What counts is the
nature of the treatments, that is, the
treatment design.

I think mean separation procedures do
have a place in data analysis, despite their
frequent misuse. So, assuming it is
appropriate to use one, which procedure
should one choose? There is room for
differing opinions. Very briefly, here are
some of my own feelings. First, [ would
never use a multiple range test (Duncan’s
or Newman-Keuls’). In using a multiple
range test, means are ranked and then
compared by one statistic if they are
adjacent in the ranked list, by another
statistic if they are separated by one
mean, by yet another if they are separated
by two means, etc. Why should my
perception of a difference between
treatments A and B depend on whether
the other treatments in the experiment
happened to give means that fell between
those for A and B? Furthermore, since

these procedures differ fundamentally in
the meaning they attach to the error rate,
I prefer procedures that define the error
rate in easy-to-describe ways (LSD and
Tukey’s HSD). And, most importantly,
multiple range tests do not lend
themselves to easy construction of sets of
simultaneous confidence intervals.
Interval estimation is far more informative
than hypothesis testing, ought to be used
more often, and is easily done with LSD,
HSD, or the Waller-Duncan significant
difference.

Second, unless one has very few
treatments, the HSD and Scheffé’s test
are too conservative for most applications.
They offer so much protection against
type I errors (false positives: claiming
differences that are not real) that it is
difficult to find any treatment differences,
and type Il errors (false negatives: failing
to detect real differences) become too
likely.

Third, I usually choose the LSD or the
Waller-Duncan test. It is well known that
the LSD is prone to type I errors, but if
one requires a significant F(evidence that
treatment differences do exist) before
applying the LSD, then the risk of type I
errors seems acceptable; this is often
called using the “protected” LSD. The
Waller-Duncan test is conceptually
appealing; the value of the statistic falls
somewhere between the LSD and HSD
according to the calculated F. When the F
is small (little evidence of treatment
differences), the Waller-Duncan statistic
is close to the HSD, providing a high level
of protection against type I errors. When

the F is large, it approaches the LSD,
making it easier to identify treatment
differences that the F has indicated do
exist. However, the meaning of the error
rate for the Waller-Duncan test is not
easily described, the statistic is more
complicated, and the test suffers from
limited availability of tables.

Which mean separation procedure one
elects to use—when it is appropriate to
use one—is far less important than
knowing when they are all inappropriate.
The key to deciding when they are all
inappropriate lies in the treatment design.
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