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Many recent papers on disease incidence have used a maplike
representation of deviations from random behavior (11-15,23,24,
25,28). The basic procedure is to compare observed infected pair
counts with expected pair counts, assuming a random distribution,
For the large number of multiple comparisons made in these
analyses, the level of confidence used is not appropriate. This
letter discusses the problem and proposes a new method of
analysis, along with directions for its use.

The spatial distribution of infected plants within a field is an
important characteristic of a disease epidemic. The degree of spa-
tial aggregation of disease may depend on the distance to the
source of inoculum, as well as variation in the physical and cul-
tural conditions occurring within a field. The spatial aggregation
of plant damage due to disease is important in evaluating yield
loss (6,7,9,17,21), and the changes in aggregation over time may
provide a vital clue to the underlying mechanism of inoculum
dispersal and the scales of distance over which it operates (8).

Attempts to quantify nonrandom patterns in terms of a single
scalar statistic (2,32) or the fitting of a theoretical distribution
(1,18,33) give no information on the physical scale of aggregation.
Quadrat methods (16,19,22) and more sophisticated spatial auto-
correlation techniques (3,20) can give some information on length
scale but, usually, no directional information is obtained. All of
the above methods are based on the assumption of a continuously
varying disease severity and, as such, are not directly applicable to
disease-incidence data, which is binary in nature (the only possi-
ble conditions are diseased or healthy). The overall departure of a
binary data set from random behavior can be determined by
Ripley’s second order technique (26,27). This method is based on
the difference between the observed and expected number of in-
fected pairs less than a certain distance apart. Unfortunately, this
approach yields no directional information.

Since many agricultural crops are planted in rows, there is
every reason to believe that contagion is direction dependent. In
addition, wind dispersal, rain splash dispersal, and surface water
dispersal of spores are all apt to be strongly dependent on direc-
tion. Gray et al. (15) suggested a method that incorporates both
interplant orientation and distance into the analysis. This proce-
dure was later formalized in the computer program 2DCLASS
(25), and then extended to include temporal information in the
computer program STCLASS (23). The method categorizes pairs
of infected plants into distance-orientation classes depending on
the x-distance and y-distance between the infected plants within a
pair. Infected plant pairs within each class are counted. The ex-
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pected number of pairs and the confidence limits about this
expectation value are calculated stochastically using Monte-Carlo
simulations. The results are summarized in a matrix of probabili-
ties representing deviations from random behavior for each of the
x-y distance classes, which are then judged significantly non-
random at some o-level of probability. In recent years, there has
been a preponderance of papers using this technique to character-
ize disease-incidence data on a two-dimensional grid (11-15,23,
24,25,28). Conclusions drawn from the above analysis are often
ambiguous and, for this reason, I would like to reexamine the
method on a more formal basis.

There are two interrelated problems with the above distance-
class methodology. First, for a large field with many infected
plants, these calculations can become unwieldy. With the advent
of faster personal computers, the unwieldy nature of these calcu-
lations is not as serious a problem as it once was. However, for a
large field with 1,000 plants, a single 2DCLASS run with 400
Markov simulations using a compiled program takes about 7 min on
a 60 MHz Pentium. I will show that the appropriate number of
simulations is closer to 4 x 10°. Such a calculation will take almost
5 days. Second, because of the many distances and angular orienta-
tions tested, this approach suffers from the problems associated with
all multiple comparison tests that can only be corrected by employ-
ing a more conservative test of statistical significance, requiring an
increase in the number of Monte-Carlo simulations (4,30,31).

These two shortcomings of the Monte-Carlo enumeration of
confidence limits can be overcome by an alternative method of
analysis. The purpose of this letter is to present an exact analytical
method for calculating expectation values and confidence limits
for the observed number of infected plant pairs within every pos-
sible distance and angle class. In addition, the analytical method
provides confidence limits to any level of probability without in-
creasing the time of the calculation. This allows a logical frame-
work within which the multiple comparison tests may be applied
conservatively using the Bonferroni method (4).

METHOD

Plant pairs. Consider a field containing n plants arranged in a
rectangular array, W plants wide in the x-direction and L plants
long in the y-direction (Fig. 1). If a total of n,, of the lattice sites
are not occupied (missing), then:

n=L-W-n,, (1)

Taking these plants two at a time, we can also consider pairs of
plants. The total number of unique plant pairs, Ny, is:

Nr=n(n-1)/2 (2)
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Equation 2 is obtained by realizing that there are n possible
choices for the first plant in a pair and (n — 1) choices for the sec-
ond member of the pair. The division by two is necessary since
each pair is counted twice, depending on the order in which plants
were chosen.

These pairs may be grouped into distance-orientation classes
depending on the number of plants in the x-direction and y-direc-
tion between the plants in the pair. For example, pairs within the
(1,3) distance-orientation class are constructed by starting at a
reference plant (tail of arrow, Fig. 1), moving +1 plants to the
right, +3 plants up, and finally arriving at the target plant (head of
arrow, Fig. 1). The reference and target plants are then associated
as a pair and characterized by their separation vector, v. In Figure
1, v = (+1,+3). Note that reference plants in such a pair must lie
within the lower left rectangle in Figure 1 (solid outline) and the
target plants are drawn from a different sample, namely the upper
right rectangle in Figure 1 (dashed outline). In a rectangular array,
the farthest two plants can be apart in the x-direction is W — 1.
Depending on whether the reference plant is to the left or to the
right of the target plant, this maximum distance can be positive or
negative (X(W - 1)). Likewise, the separation in the y-direction
ranges from —(L — 1) to +(L — 1). Letting (j,k) represent an arbi-
trary distance-orientation class, the allowed values of j and k are
given by:

~W+l<j<W-land-L+1<k<L-1 3)
Of the total number of plant pairs, Ny, only a portion, N, belong
to the (j,k) distance class defined above. Note that for j = 0 and k

= (), the value of N is n. If there are no missing plants (n, = 0),
then Ny is given by:

Ny=W- [j]) @~ [k]) )

Equation 4 represents the number of plants included within either
rectangle in Figure 1.
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Fig. 1. Rectangular lattice of plants (open circles). Plant pairs within the
distance-orientation class (j,k) are defined such that the vector, v = (j,k),
goes from one plant to the other within the plant pair.
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Due to reflective symmetry, however, Ny = N_i;. This redun-
dancy is the reason for the division by two in equations 2 and 5.
Thus, the pair illustrated in Figure 1 also can be drawn with the
vector going from the target plant (arrow head) to the reference
plant (arrow tail). If there are missing plants (7, > 0), the expres-
sion for Ny is a bit more complicated, and the details of its
evaluation are shown in the Appendix (equation AS5).

Assume a number, i, of the plants are infected, leaving n — i
plants healthy. In this case, pairs of plants within the plot also can
be characterized according to the disease status of each plant in the
pair, in addition to interplant distance and direction. This involves
counting all possible combinations of diseased, D, and healthy, H,
plants (i.e., H-H, H-D, D-H, and D-D) within each distance-
orientation class. In analogy with Equation 2, the number, I, of the
plant pairs containing two infected plants (D-D), is given by:

Ir=i(i- )2 )

A number of these infected pairs, I, lie within the (j,k) distance
class. If infection is a random process, then we would expect the
fraction of N that are infected pairs will be independent of inter-
plant distance and orientation (i.e., I/Nj = constant). If, however,
contagion is present, then proximity to a diseased plant would
enhance the probability of infection, and one would find a larger
number of infected pairs within smaller distance classes.

Monte-Carlo simulations. Gray et al. (14) suggested a three-
step process for evaluating and interpreting the distribution of
infected plant pairs among the possible distance-orientation
classes. These steps are:

Pair enumeration. Because of the different possible number of
pairs in each distance-orientation class, Gray et al. (14) suggested
the calculation of the standardized count frequency (SCF) for each
distance-orientation class ([X,Y]). This is accomplished by di-
viding the observed infected pair count by the total number of
possible pairs in each distance-orientation class (i.e., Ix/Ny). In
assigning distance classes, Gray et al. (14) did not differentiate
between positive and negative values for the x-displacement or the
y-displacement (X = |j| and Y = |k|). The number of infected,
Ixy, and total, Nxy, plant pairs in Gray’s [X,Y] distance classes
can be related to ;; and Nj; defined above, as follows:

Ixy = I+ L
ny = Njg. + N_jk ;j,k #0

and (©)

Iy =1y
ny=Njg ;jork:O

It then follows that SCF[X,Y] = Ixy/Nxy. The algorithm used in
the computer program 2DCLASS (25) calculates the observed
value for SCF[X,Y] in each distance-orientation class by simply
counting all plant pairs and infected plant pairs and assigning
them to the appropriate distance class.

Monte-Carlo estimation of the distributions. To estimate the
expected distribution of pair counts, 400 numerical simulations
are run using a pseudo-random number generator to place i in-
fected plants within the lattice. SCF[X,Y] is calculated for each
simulation in the same way as for the observed data. The mean
value and confidence limits are then estimated for each SCF[X,Y]
from the results of the numerical simulations.

The multiple comparison matrix. The results of this analysis are
usually summarized as a maplike matrix, within which SCFs that
are calculated to be significantly different from expected (P <
0.05) are flagged by a plus sign, “+”, or a minus sign, “-”, de-
pending on whether the observed value is larger or smaller than
expected (11-15,23,24,25,28).

In what follows, I will show that step 2, the evaluation of the
expected probability distributions, can be achieved analytically. In



addition, I found that the interpretation of the probability matrix
obtained in step 3 can be troublesome because of the high prob-
ability of many false positives (Type I errors).

THEORY

I propose a new method, based on combinatorial theory, to cal-
culate the mean and confidence limits of the expected number of
infected plant pairs. First, I calculate the probability, p, that a ran-
domly chosen pair is infected. If all outcomes are equally likely,
then the probability of success is the ratio of successful events
(number of infected pairs, I7) to the total number of events
(number of pairs, Ny) so that p = I;/N7. Note that p is equivalent to
what Gray calls ‘the standardized number of expected infected
pairs of plants’ in his Table 1 (14) and applies to all distance-
orientation classes.

In like manner, one can calculate the probability that exactly /
infected pairs are included in a sample of N pairs drawn from a
total population of size Ny that contains I infected pairs. This
probability distribution is derived in the Appendix and shown to
be given by the Hypergeometric function, Pyg (I,I7,N,Ny), defined
by equation A2 (5,30):

LANY N, —1, (N, -N):
(L= N=1 (N, =L -N+1 )N,

Po(1,1;.N.N, )= (A2)

Fisher’s exact test (10,30) is a statistical method that was spe-
cifically designed to calculate confidence limits on population
distributions described by the Hypergeometric function (equation
A2). The method involves construction of a 2 x 2 contingency
table (Table 1) for each distance-orientation class. Deviation from
random behavior is tested using a chi-square ()?) test of independ-
ence with one degree of freedom, in which, for a sample contain-
ing N pairs of which I are infected, % is given by:

@,'-(fxf,,—.fr-N+1)-(N—,')-(Jr,—f)|—{%H2 N,
)

which simplifies upon expansion to: (7

=12
N
2 [l]-NT—N-IT|—{TT} N,
2= =
1,(N,~1, ) N-(N,-N)

Equation 7 includes Yate’s adjustment for continuity (term in
curly brackets; 10,30). The above method is very accurate, as long
as the expected number of pairs [A = (NI)/N;, Appendix] is greater
than five (10). At smaller expectation values, the skewness of the
distribution is not as well described by the symmetrical %? distri-
bution, and the Hypergeometric function (equation A2) can be
used to calculate the exact probability.

Multiple comparisons as a binomial distribution. As the
number of experimental comparisons increases, spurious results
become more likely (4,31), as a simple example will show. Sup-
pose there are 20 Ping-Pong balls in a paper bag. One of these
balls is marked with a plus sign, “+”, and one is marked with a
minus sign, “~”. The remainder of the balls are unmarked. If a ball
is chosen at random from the bag, then the probability of choosing
an unmarked ball is 0.9 (successes/total = 18/20), the probability
of choosing the ball marked “+” is 0.05, and the probability of
choosing the ball marked “~"” is 0.05. The drawn ball is now re-
turned to the bag and the process is repeated. The probability of

1’ =

choosing unmarked balls twice in a row is 0.81 (0.9 x 0.9). As the
process continues, it becomes less and less likely to repeatedly
choose unmarked balls. After 10 draws, the probability is less than
0.35, and it falls to less than 0.05 after 29 draws. This process is
analogous to repeatedly comparing observed with expected pair
counts at the 0.05 level of confidence. Of course, when the ball
marked “+” or “~"" is drawn from the bag, this corresponds to an
SCF that is greater or less than expected (P < 0.05), respectively.
Typical applications of the 2DCLASS method involve many com-
parisons (11-15,23,24,25,28), so that spurious results are a serious
problem.

Suppose that ¢ comparisons are made between observed and
expected values, and that a number, s, of them are judged signifi-
cant at the o-level of probability. By definition, the probability of
falsely claiming significant deviation from random behavior is o
for any one of the individual comparisons. The probability,
Py(f,c,0), that a number, f, of the ¢ comparisons are falsely judged
significant is, then, given by the binomial distribution:

c!

_ S g cesf
fie—rn® (= ®

B (fe0)=

in which the mean value of fis o x ¢. This mean value is the ex-
pected number of “significant” (P < o) SCFs that would be, mis-
takenly, reported by 2DCLASS for a random distribution. Equa-
tion 8 can, of course, be used to describe the above Ping-Pong ball
experiment. In this case, f = 0, the probability of choosing a
marked ball, is o0 = 0.1, and the probability of choosing an un-
marked ball is (1 — o) = 0.9, so that the probability of choosing ¢
unmarked balls in a row is Py(0,c,0) = (1 — o) = 0.9¢.

Binomial evaluation of the overall deviation from a random
distribution. The number of distance-orientation classes, s, for
which the SCFs as calculated either by 2DCLASS or through
the use of equation A2 or 7 are found to be significantly
different from expected (P < 0.05), can be used to determine the
overall deviation from a random distribution. The procedure is
to perform a summation over equation 8 to evaluate the pro-
bability that s or more of the comparisons are mistakenly judged
significant:

f=c c!

» <, 1— c=f
e 1) W

F(f 2s,c,a)=

in which the total number of comparisons is c=Lx W -1, o0 =
0.1, because both tails of the distribution (high and low) are
tested at the 5% level and fis a summation variable. Before any
interpretation of the results of a 2DCLASS analysis is made,
equation 9 should first be applied to the distance-orientation
class probability matrix to establish a significant deviation from
random behavior. This protocol is analogous to the “protected”
approach for multiple comparisons in which one does not
proceed with the analysis unless there is a significant treatment
effect (4,31).

The Bonferroni confidence limit. Even if the application of
equation 9 has demonstrated that the data set deviates signifi-
cantly (P < 0.05) from a random distribution, the probability ma-
trix may still be littered with spurious results. To ensure that there

TABLE 1. The application of Fisher’s exact test (2 x 2 contingency table; 10)
to estimate confidence limits using a chi-square ()?) test of independence
with one degree of freedom

Infected Healthy Total
Sample 1 N-1 N
Remainder Ir=1 Nr=Ir=N+1 Ny-N
Total Iy N, -1Ir Ny
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is less than a 5% chance of even one spurious value, a more con-
servative confidence limit, 5, must be applied (30), such that:

Py(f 21,c,8)=1-Py (f=0,c,B)=0.05

which can be solved for B using equation 8 to yield: ~ (10)

B=1-(1-0.05)"=1-(0.95)"

For the previous example of a field with 1,000 plants, ¢ = 1,000
and equation 10 can be evaluated to yield § = 0.0000513, approxi-
mately equal to 0.05/c. For the Monte-Carlo method employed by
2DCLASS to detect deviations from random at such a small level
of probability, the number of numerical simulations must be in-
creased by about a factor of ¢, so that on the order of 4 x 10°
rather than 400 simulations must be run.

APPLICATION

An illustrative example. The hypothetical data set proposed by
Gray et al. (14) is reproduced here as Figure 2, with L = 12 and W
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Fig. 2. Hypothetical data set on an 8 x 12-rectangular lattice, first introduced
by Gray et al. (14). Infected plants are denoted by filled symbols healthy
plants as open circles.

>

= 8. As a simple count of infected plants (filled symbols) will
show, i = 21, and, since there are no missing plants, n = 96
(equation 1). Thus, the total number of pairs, Ny, is 4,560 (96 x
95/2 using equation 2), and the total number of infected pairs, I,
is 210 (21 x 20/2 using equation 4). Direct pair counts give the
distribution of these 210 infected pairs among the (j,k) (I, Fig.
3A) and [X,Y] (Ixy, Fig. 3B) distance-orientation classes. Sto-
chastic determination of the significant SCFs, as reported by Gray
et al. (14), is shown in Figure 4. In constructing this probability
matrix, a total of 95 (L x W — 1) comparisons are made. Since
both tails of the distribution (high and low) are tested at the 5%
level (oo = 0.05), the probability of falsely claiming significant
deviation from random behavior is 0.1 (2 x o) for each compari-
son (distance-orientation class). Thus, the expected number of
false positives (Type I error) is 9.5 (0.1 x 95). This is to be com-
pared with the 41 reported significant SCFs (21 larger than ex-
pected, “+” or “4”, and 20 smaller than expected, “~”, Fig. 4).
In addition, using equation 9 (4,31), there is a 5% chance that as
many as 15 of the 41 SCFs that Gray et al. (14) calculated to be
significantly different from expected may be spurious. The
question as to which 15 may be spurious casts serious asper-
sions on any geometrical interpretation of the pattern shown in
Figure 4. On the other hand, the probability of obtaining 41
flagged SCFs from a random distribution of plants is less than
one in a billion (equation 9). Thus, the disease pattern is
definitely not random.

Using equation 10 with ¢ = 95, I obtain p = 0.00054. Using
equation A2 to reexamine the significance of the observed SCFs
at this more conservative level of probability yields only 13 sig-
nificant SCFs ( “4”, Fig. 4). By definition of B (equation 10),
there is less than a 5% probability that even one of these 13 is
spurious and, using equation 9, there is less than one chance in
107 that 13 or more significant SCFs at this confidence level
could be drawn from a random distribution.

It is interesting to note that none of the SCFs that had signifi-
cantly less than the expected number of pairs at o = 0.05 level
of confidence (“-”, Fig. 4), were significant at the more
conservative § = 0.00054 level of confidence. A comparison of
Figures 3B and 4 reveals that 19 of 20 minus signs in Figure 4
correspond to zero observed pairs (one has two pairs). The low
number of counts makes it impossible to have significant
differences on the low side with the more conservative
confidence level (B).
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Fig. 3. Tabular representation of the infected pair counts in A, (j,k) notation (f;) and B, the [X,Y]-distance classes (/xy) introduced by Gray et al. (14).
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DISCUSSION AND CONCLUSIONS

For disease-incidence data, the statistical determination of
anomalously high or low pair counts within certain distance-
orientation classes is a powerful and promising technique in the
study of the two-dimensional distribution of disease. However,
although I have presented an analytical approach to calculating
expected pair counts and confidence limits, there are still some
remaining problems with the method that future work must ad-
dress.

Difficulties in the interpretation of the “core cluster” size and
“reflected clusters” still remain (14,15). In particular, it appears
that the “core cluster” size is a function of the size of the field (G.
Hughes, personal communication, 29). This result is not too sur-
prising given that the 2DCLASS method defines “core cluster”
size in terms of a probabilistic limit that is intimately tied to the
number of infected plants in the sample. Thus, both the size of the
field, as well as the incidence of disease, would be expected to
affect the “core cluster” size. It would be preferable to define a
contagious area scale in some sample-size independent fashion.

In addition, because of the inherent spatial displacement be-
tween the regions where reference plants and target plants are
located, each member of an infected plant pair is drawn from a
different population with possibly different levels of infection.
This problem is especially severe when anomalous behavior, ei-
ther high density clumps of infected plants or areas with very low
disease incidence, are in close proximity to the boundary. The
manner by which this boundary effect confounds the detection of
nonrandom behavior at differing length scales must also be inves-
tigated.

Because of these remaining difficulties, one must flavor inter-
pretation of point patterns with caution. This involves the use of
conservative confidence limits and, of course, well-planned and
adequately replicated experiments that pay heed to the effects of
the plot boundary.

I present here the mathematical tools needed to examine the re-
sults of a two-dimensional distance-orientation class analysis of
disease-incidence data. These include a method to ascertain the
overall deviation from random behavior (equation 9) and the
means to calculate more conservative confidence limits on in-
fected pair counts without an undue penalty in increased computer
time (equations A2 and 7). The use of this technique will reduce
spurious results and extend the applicability of the method over a
larger range of disease incidence.
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Fig. 4. Tabular representation of the stochastic determination of the stan-
dardized count frequency [X,Y] values that are significantly larger (P < 0.05,
“+" and “4") or significantly smaller (P < 0.05, “~) than expected, as cal-
culated using 2DCLASS (14). Values significant at the more conservative
< 0.00054 are also shown (calculated using equations 2-5, “4").

APPENDIX

The Hypergeometric distribution. The question to be an-
swered is: How many of the total number of infected pairs, I, are
to be found in a certain subset of size N, selected from an equally
probably total number of plant pairs, N;? Let I be the number of
infected pairs meeting this requirement.

In general, the number of ways to choose n indistinguishable
objects from a population of N such objects is given by the com-
binatorial or binomial coefficient, &(n,N):

g(;:,N):[N) N!

n =n!-(N—n)!
in which
N
N'=[Im=N-(N-1)-(N=2)- ... -1
m=1

in which m is a dummy integer variable. If all outcomes are
equally likely, then the probability of an event is the ratio of num-
ber of successful events to the total number of events. In this case,
a successful event has I infected pairs within subset N. The total
number of successful events is equal to the product of the number
of ways (W, = @(,Iy)) to choose I infected pairs from a
population of size I and the number of ways (Wy, = @[(N —
D),(N7 - I7)]) to choose the remaining (N — /) noninfected pairs
from a population of size (N — I7). The total number of ways
(Wr = @(N,Ny)) to choose the N pairs of plants from the total
number of pairs, Ny, is the total number of possible events.
Therefore, the probability that exactly / pairs fulfill the above
requirements is given by:

[L,](NT-IT)

ww I N-I
y N = ! Mf: (A])
PHG(I 1,.N,N,) 7

(%)

so that

) . N N!
in which n —n!(N—u)!

1ANY N1 ) (N, - W) A2
L=1)AN=1)(N, =1, -N+1):N, !

PHG(J,IT,N.N,)=”_(

in which Ny, are given by equations 2 and 4, respectively. Equa-
tion A2 defines the Hypergeometric distribution, (Pyg(/,Ir,N,N);
5,30), to be interpreted as the probability of exactly I successful
events within a subpopulation of size N drawn from a population
of size Ny containing I successful events. Although formidable
in appearance, equation A2 is easily evaluated and the Hyper-
geometric function is supplied with all major spreadsheet
packages (e.g., in QuattroPro: @ HYPGEOMDIST(a,b,c,d)). It
is interesting to note that equation A2 gives the same numerical
answer if /7 and N are interchanged. This reflects the fact that
we can judge a successful event either by whether or not the
pair is infected or by whether or not the pair belongs to the
appropriate subsample.

Under the condition that population values are much larger than
the sample value (i.e., Np,Ir >> N,I), equation A2 reduces to the
binomial distribution (Py(N,I,p)):
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in which p = I'/Nr is the probability that a randomly chosen pair is
infected. If infected pairs are also a small fraction of the total pair
count (i.e., Ny >> I and N >> I), then equation A3 reduces further
to the Poisson distribution (Ppyisson(1,A)):

B C

W

Fig. 5. Schematic representation of the effect of missing plants on pair counts
corresponding to distance-orientation class (j,k) (equation A5). Missing
plants in region A can reduce possible pair count by two, since missing plant
can act as either a reference or a target plant. Missing plants in regions B can,
at most, reduce possible pair count by one, since the missing plant can act as
either a reference or a target plant, but not both. Missing plants in regions C
do not affect pair counts.
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Fig. 6. Schematic representation of distance-orientation classes affected by a
missing plant at position (x,y) (circled “M,", Fig. 5) in the plant-centered
view. Dashed rectangle represents the reflection of hatched area into the
upper half of j — k plane. The number of pairs within distance classes lying
within both the dashed rectangle and the solid rectangle in the upper half
plane are reduced by two. Whereas, the number of pairs within distance
classes lying within either the dashed rectangle or the solid rectangle, but not
both, are reduced by one.
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in which A = (NI7)/N7 is the value of the mean for all of the above
probability distributions (equations A2, A3, and A4). The vari-
ances for the three distributions are as follows: A(1 — p)(Ny —
N)/(Ny — 1) for equation Alb, A(1 — p) for equation A2, and A for
equation A3. Thus, the distribution becomes more dispersed
(variance gets larger) in going from Hypergeometric distribution
to the Binomial and Poisson approximations.

Pair enumeration. As discussed above, if there are no missing
plants (n, = 0), then the total number of pairs of plants within
distance-orientation class (j,k), Ny, is given by equation 4. Miss-
ing plants will reduce this number. In Figure 5, the rectangular
lattice is conceptually divided into three regions (A, B, and C;
Fig. 5). If a missing plant is located within area C, there is no ef-
fect on the total number of pairs. A missing plant located within
area B, however, can reduce N, by, at most, one pair, and a miss-
ing plant located within area A can reduce Nj by as much as two
plant pairs. Basically, plants in region A can act as both a refer-
ence and a target plant, since they lie within both reference and
target rectangles (Fig. 1). Plants in region B can act as either ref-
erence or target plants, but not both. To calculate the total number
of plant pairs, /, first define n,, n,s, and n,c to be the number
of missing plants in rectangular regions A, B, and C, respec-
tively (Fig. 5). Potentially, the total number of pairs can be
reduced by as much as 2n,, + n,s. However, some of the miss-
ing plants may pair with other missing plants. The procedure is,
then, to count the number of missing-missing plant pairs that
fall into distance-orientation class (j,k), M. Then the total
number of pairs of plants within distance-orientation class (j,k),
Ny, is given by:

Ni=(W=[jD) - @=|k|)=2m,5— nps + My, (AS)

This calculation (equation A5) must be carried out for each dis-
tance-orientation class (j,k).

Because there are usually many more distance-orientation
classes than missing plants, there is a more convenient algorithm
than equation A5 to calculate Ny on a computer. The first step is
to construct the N matrix W+ 1 <j<W+land-L+1<k<L
— 1) and fill it with the appropriate values (equation 4) for the case in
which there are no missing plants. Then a list containing the x-y
coordinates of each of the missing plants is constructed. Let x; and y;
be the x and y coordinates, respectively, of the /th missing plant
(circled M, Fig. 5). In the coordinate system centered on this
missing plant, the field appears as an off-centered rectangle (Fig. 6).
For each of the missing plants, two passes through the N; matrix are
then made. On the first pass, matrix elements such that -W + x; <j <
x;—1and 0 < k <y, — 1 are reduced by one (dotted rectangle, Fig. 6).
This accounts for the loss of possible pairs for which the missing
plant is the target plant. On the second pass, matrix elements such
that —x; +1 <j < W—x;and 0 £ k < L — y, are reduced by one (solid
unhatched rectangle, Fig. 6). This accounts for the loss of possible
pairs for which the missing plant is the reference plant. This
stepwise reduction of the appropriate N matrix elements continues
until all the missing plants have made their contribution. Finally, M,
is evaluated by direct counting over all possible pairs of missing
plants and added element-wise to the N matrix.
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