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van der Kamp and Tait (3) developed a mathematical model to
describe the lodgepole pine (Pinus contorta Douglas ex Loud.)-
western gall rust (Endocronartium harknessii (1.P. Moore) Y.
Hiratsuka) pathosystem. Although discussed in terms of this par-
ticular disease, the model concerns itself with the segregation of
members of a natural population that are susceptible and resistant
to diseases characterized by discrete infections. van der Kamp 2)
applied the model to investigate the theoretical limits of selecting
trees for resistance to a particular disease and concluded that
“__.the ability to identify resistant trees is significantly compro-
mised by random placement of spores and by the large number of
trees that remain uninfected”. In contrast, our examination of the
model predicts increased levels of resistance when disease-free
trees are selected.

The first model assumption is that for a single population the
proportion of plants in each of N + 1 susceptibility classes is de-
scribed by the binomial distribution
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where N and p are the binomial parameters and i is the class index
that ranges from 0 to N corresponding to increasing susceptibility.
This is equation 1 in van der Kamp and Tait (3). The second
model assumption is that the susceptibilities of the classes are re-
lated to each other by either an additive or a multiplicative rela-
tionship:

Sy =8y +iB (2
or
5, =5,B' (3)

where B is the increment parameter and S, is the susceptibility of
the least susceptible (most resistant) class. These are equations 4a
and b in van der Kamp and Tait (3). The third model assumption
is that the distribution of the number of infections per tree for
trees belonging to the ith susceptibility class is described by a
Poisson distribution:

P(X)=exp(-A)A,/X! (4)

where X is the number of infections and the Poisson parameter A, =
DS,, where D is the dosage and S, is the susceptibility at “unit do-
sage” (3).

van der Kamp and Tait (3) chose N to be 20 and calculated the
predicted number of discrete infections. A minimization technique
was used to generate chi-square statistics, and the multiplicative
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relationship, rather than the additive relationship, gave the closest
fit with their data. For the multiplicative case, their procedure gave
values for p, B, and S, of 0.824, 3.21, and 9.85 x 107, respec-
tively.

With the estimate of p, the left side of equation 1 can be com-
puted for each class. These b; values are given in Table 1 and are
illustrated in Figure 1. Figure 1 corresponds to Figure 2 in van
der Kamp and Tait (3) or to the hatched bars in Figure 1 in van
der Kamp (2). By substituting the estimated values of B and S,
into equation 3, the susceptibility for the ith class is obtained
(Table 1).

For each class (or bar in Fig. 1), the proportion of trees with 0
infections can be computed from the Poisson distribution. This
proportion (corresponding to X = 0) is determined by substituting
the values of A,(=DS,) into equation 4, remembering that A = 1
and 0! = 1. The resulting values of P;(0) (Table 1) show that all
trees with 0 infections originate from classes with susceptibilities
less than or equal to 0.402. Equivalently, these trees come from
classes that have fewer than an average of 2.01 (DS; = 5 x 0.402;
Table 1) infections per tree when the population average is 5 in-
fections per tree. Thus, the ability to identify resistant candidates
is improved by selecting trees with 0 infections.

We now have the proportion of trees in each class that has 0 in-
fections and the proportion of trees in the whole population repre-
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Fig. 1. Proportion of trees (lodgepole pines) in each susceptibility class from
a natural population segregated for susceptibility to a plant disease (western
gall rust). The proportions are calculated from the binomial distribution (equa-
tion 1 in text) and are listed in Table 1. Proportions in classes 0 to 10 are too
small to graph.



TABLE 1. Values calculated for model variables and parameters from the lodgepole pine-western gall rust data of van der Kamp and Tait (3)

Susceptibility class®

Parameter 11 12 13 14 15 16 17 18 19 20
bp 0.00 0.01 0.03 0.08 0.14 0.21 0.23 0.18 0.09 0.02
SF 0.000 0.001 0.004 0.012 0.039 0.125 0.402 1.290 4.140 13.290
DS8(D=5) 0.00 0.01 0.02 0.06 0.19 0.63 2.01 6.45 20.70 66.45
POy 1.00 0.99 0.98 0.94 0.82 0.53 0.13 0.00 0.00 0.00
bPO) 0.00 0.01 0.03 0.07 0.12 0.11 0.03 0.00 0.00 0.00
bPA0)/T® 0.01 0.03 0.08 0.19 0.31 0.29 0.08 0.00 0.00 0.00

* Classes 1 to 10 are not shown because their susceptibilities are too small to contribute to the calculations,
b b; is the proportion (binomial probability) of trees in the ith class computed from equation 1 (in text).
¢ §; is the susceptibility of the ith class computed from equation 3 (in text), with values of B and So=3.21 and 9.85 x 10-'°, respectively.

4 DS; is the Poisson parameter, A, for the ith class.

¢ P{(0) is the proportion of trees with 0 infections in the ith class computed from equation 4 (in text).
! b;P(0) is the nonstandardized proportion of trees with 0 infections in the ith class.
& b,P{(0)/T is the standardized proportion of trees with 0 infections in the ith class; T'=Z._;,2 b;P,(0).

sented by each class. By multiplying P(0) by b;, one obtains the
nonstandardized proportions of trees with 0 infections from the
whole population within each class (Table 1). This set can be
standardized by summing the elements in the set and dividing
each member by the sum (7 = 0.37) to obtain the results listed in
Table 1: P(0)b/T; T = [Py(0)by + ... + Pyy(0)by]. These numbers
mean, for example, that 19% of the trees with 0 infections (Table
1) come from the class in which there is an average of 0.06 (DS;;
Table 1) infections per tree, and 31% of the trees with 0 infections
come from the class in which there is an average of 0.19 infec-
tions per tree when the overall population average is 5 infections
per tree. These percentages show that more than 90% (1 + 3 + 8 +
19 431 + 29 = 91 = 100Z,'S b;P(0)/T; Table 1) of the trees with
0 infections come from susceptibility classes with 0.63 or fewer
(DS;; Table 1) infections per tree when the overall average is 5 in-
fections per tree.

If the experiment could be repeated several times, not all the trees
with 0 infections in one experiment would necessarily have 0 in-
fections in all other experiments. The expected number of infec-
tions on trees with 0 infections can be determined by multiplying
the proportions given by b;P,(0)/T in Table 1 by the susceptibility
of the class to which they correspond (S;), summing, and multi-
plying by 5. The resulting 0.43 infections per tree is an order of
magnitude improvement over the population average of 5 infec-
tions per tree for this data set (2,3). Therefore, in contrast to van
der Kamp and Tait (3), we believe that selection of trees with 0
galls will result in a significant improvement in resistance and that
the ability to identify resistant trees is not significantly compro-
mised by random placement of spores (2).

In Figure 2, which corresponds to Figure 2 in van der Kamp (2),
the top or heaviest line is the average susceptibility (weighted by
by) of trees with 0 infections plotted against severity of disease in
the population, defined as the average number of infections per
tree. The points used to plot this line were obtained by computing
the expected number of infections on trees with 0 infections for
each value of D from 1 to 50 according to the procedure used
above and then dividing by D to obtain the susceptibility of the
infection-free trees. For example, if the average number of infec-
tions per tree in the whole population is 5, one obtains the av-
erage susceptibility of the trees with 0 infections from the heavi-
est (top) line by reading the y value that corresponds to an x value
of 5 in Figure 2 . Multiplying this y value (0.085) by 5 gives 0.43,
which is the value obtained previously.

One could now pose the following question. If it were possible
to identify the class to which a disease-free tree belonged, what
sort of improvement in resistance might one expect from this selec-
tion, or conversely, what is compromised by not knowing the class
of the disease-free tree? This can be calculated by establishing a
threshold so only disease-free trees from classes with suscepti-
bilities below the specified threshold are included. In Figure 2,
the bottom three lines correspond to trees with 0 infections that
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Fig. 2. Susceptibility of individual trees (lodgepole pines) with 0 infections
for severities (average number of infections per tree in the population) rang-
ing from 1 to 50 infections per tree for western gall rust data. The top line
includes all O-infection trees from all classes. The second line includes all 0-
infection trees from classes with susceptibilities below 1.290, i.e., class 17 or
lower. The third line includes all 0-infection trees from classes with suscep-
tibilities below 0.402, i.e., class 16 or lower. The fourth line includes all 0-
infection trees from classes with susceptibilities below 0.125, i.e., class 15 or
lower. Susceptibility is defined as the number of infections per tree when the
population average is standardized to 1 infection per tree.

originate from classes with susceptibilities below the specified
thresholds. The susceptibility and expected number of infections
for disease-free trees selected from classes with susceptibilities
less than a threshold of 0.402, corresponding to the third line from
the top in Figure 2, are 0.052 and 0.26, respectively, when the
severity of disease in the population is 5 infections per tree. There-
fore, even if one knew the classes from which the disease-free
trees originated, the values differ in this case by 0.17 of an infec-
tion (from 0.26 to 0.43). Consequently, in our view, not being able
to identify the susceptibility classes from which the disease-free
trees originate is not a significant compromise.

The original model refers to a set of “uninfected trees...more
resistant than any of the infected trees” (2; Fig. 2) based on the
concept of selection with “perfect knowledge.” However, it is evi-
dent from Figure 1 and Table 1 that such a set of uninfected trees
cannot be selected, even if perfect knowledge is invoked. Given a
tree with O infections that originates from the class with suscep-
tibility of 0.125, for example, one can always find an infected tree
from a class with a lower susceptibility, 0.039 for example. This
is because each class contains trees that are both infected and not
infected. Thus, given a subpopulation of uninfected trees, it is
always possible to find an infected tree that is more resistant than
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some of the trees in the subpopulation, so a set of uninfected trees
in which every individual is more resistant than any of the in-
fected trees does not exist.

What one can do with perfect knowledge is select uninfected
trees that have a susceptibility less than any uninfected trees that
are not selected. The threshold susceptibility used above allows
selection of only those uninfected trees that come from classes
with known susceptibilities. Illustrated in Figure 2 are examples
of the curves that result for three different thresholds. Thus, one
can choose a threshold that results in a line being closer to the
topmost line (a smaller compromise to use van der Kamp’s term
[2]) or further away (a larger compromise), but in any case, the
absolute maximum for the compromise is only 0.43 infections per
tree when the average is 5 infections per tree.

We now examine more closely the definitions of dosage and sus-
ceptibility. In the original model (3), unit dosage is defined first
as the level of effective dosage that results in an average of 1 gall
per tree in the host population (3). Later, the relative suscepti-
bility is defined as the expected number of infections on the tree
at unit effective dosage (3). If a population of trees had an aver-
age of 1 infection per tree, the dosage, by definition, would auto-
matically be unit dosage, without any reference to the concentra-
tion or amount of inoculum applied. This seems inconsistent with
conventional notions of the meaning of dosage (1). We believe
that using dosage and unit dosage in this context introduces un-
necessary difficulties into the model.

The susceptibility for each class, S;, is defined as the expected
number of infections per tree in that class at unit dosage (3). We
express this as

;=N 5)

where N;! is the expected number of infections in the ith class at
unit dosage. We denote the probability of the ith susceptibility
class as p; and, as van der Kamp and Tait do (3), the susceptibility
by S. As a result, the expected susceptibility of the population is

E(S)= El'a(lznsi'pl’ = Ei=uz‘:'Ni|.F'i =1 (6)

by the definition of unit dosage, where E is the expectation op-
erator.

Although van der Kamp and Tait obtained this result using the
Poisson distribution in their appendix (3), it has been obtained
here without making any reference to the form of the probability
distribution. Regardless, equation 6 predicts that no matter what
the population of trees, the expected value of the susceptibility for
the population is always the same, namely 1.

This means that the model cannot be used to compare suscep-
tibilities of two or more populations, because susceptibility is de-
fined in the original model as the number of infections on a tree at
unit dosage and unit dosage is the dosage that always gives, on
average, | infection per tree. Imagine that two different popu-
lations of trees—one prone to infection and one not prone to in-
fection—are inoculated under identical conditions and that the
same amount of inoculum is applied to each. The dosage, in a
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conventional sense, is the same, but the two populations will have
a different average number of infections per tree. However, ac-
cording to the definitions of dosage and susceptibility in the origi-
nal model, the average number of infections per tree in both popu-
lations has been defined as the same, exactly 1.

To eliminate this difficulty, two modifications of the model defi-
nitions are suggested. First, when considering a single popula-
tion, as the original model does, susceptibility can be defined as
the number of infections per tree for a given susceptibility class
when the population average is 1 infection per tree. If, in a field
situation, the population average is different than 1 infection per
tree, the susceptibility can be standardized by dividing the num-
ber of infections on a tree by the average number of infections per
tree in the population. As a result, the terms unit dosage and
dosage would not be needed. When susceptibilities in more than
one population are compared, inoculum density and environmen-
tal conditions would be standardized. Standardization of inocu-
lum and environment would allow comparison of different popu-
lations, and the average number of infections would not be forced
to be 1. Second, in equation 4, dosage can be replaced by se-
verity, the average number of infections per tree. For complete-
ness, the symbol D (dosage in equation 4) can be renamed or
replaced by another symbol, Q, that represents severity. With
these changes, equation 4 remains, except that 4; is now given by
A = 0S;.

In summary, we have used the model assumptions (the bi-
nomial distribution of susceptibility classes, the Poisson distri-
bution for infections on a tree within a class, and the multi-
plicative process to relate susceptibility classes) together with the
van der Kamp and Tait (3) estimates of the critical parameters (¥,
p, B, and Sp) to conclude that trees with higher levels of resistance
can be identified and selected from a single population of trees.
Selecting trees with O infections will yield a subpopulation with
an expected number of infections per tree that is an order of
magnitude smaller than the overall population average in the case
in which this average is 5 galls per tree. Even with “perfect
knowledge” the absolute maximum increased improvement (beyond
the order of magnitude improvement already achieved) is only
0.43 infections per tree. Therefore, the ability to identify resistant
trees is not “significantly compromised by random placement of
spores and by the large number of trees that remain uninfected.”
We also have pointed out that it is unnecessary to introduce the
concept of “unit dosage” and “dosage” and that the dosage in the
original model is actually the “severity.”
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