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ABSTRACT

Madden, L. V., Hughes, G., and Ellis, M. A. 1995. Spatial heterogeneity
of the incidence of grape downy mildew. Phytopathology 85:269-275.

Heterogeneity of the incidence of downy mildew of grape, caused by
Plasmopara viticola, was quantified in an experimental Ohio vineyard.
The proportion of diseased leaves on each of 15 shoots (sampling units)
per plot was determined for 18 separate plots at two times (generally
August and September) during each of 3 yr. The binary data analogue
of Taylor’s power law, in which the logarithm of the observed variance
is regressed on the logarithm of the theoretical variance for a binomial
(random) distribution, provided strong and consistent evidence that dis-
cased leaves were aggregated. Year and assessment time did not affect
power law parameters. The estimate of the regression slope (b), an overall

measure of heterogeneity, was 1.30 (SE = 0.04). Heterogeneity in indi-
vidual plots was measured with variance ratio and C(a) tests and with
the aggregation parameter () of the beta-binomial distribution fitted to
the data. Except for mean incidence less than 0.05, the majority of the
plots had significant heterogeneity, and the data were better described
by the beta-binomial than by the binomial distribution. Estimates of #
were variable but were highest in the middle range of disease incidence.
Using the modified power law, sampling curves were generated to precisely
estimate disease incidence.

Additional keywords: extra-binomial variation, overdispersion, quantita-
tive epidemiology, spatial analysis.

Spatial pattern is a significant epidemiological characteristic
of plant disease (4,16). Besides aiding in the understanding of
the population dynamics of pathogens and diseases, knowledge
of heterogeneity can be used to develop efficient sampling schemes
(5,12) and properly analyze the effects of experimental treatments
on disease variables (17,38). Depending on whether the location
of sampling units (e.g., plants, leaves) is known and the type
of disease data observed in the sampling units (e.g., counts of
lesions, area of leaves affected), various techniques can be used
(16,38) to measure heterogeneity. A common practice in ecology,
as well as in plant pathology, is to fit distribution models to
the frequency of diseased units and characterize heterogeneity
by estimated parameters (4). This approach can be extended to
calculate indices of aggregation, usually based on the mean and
variance of the variable of interest, such as lesions per sampling
unit.

The Taylor empirical power law describes precisely the relation-
ship between the variance and mean on a logarithmic scale for
counts of organisms in sampling units (34-37). The slope of the
log(variance):log(mean) line is considered an index of aggregation,
although debate remains as to how biological processes give rise
to resulting slopes (1,7,35). Recently, Hughes and Madden (10)
showed that the standard power law is inappropriate for binary
data, such as disease incidence, in which a plant (or leaf) is either
diseased or healthy. They proposed a new model to be used with
incidence data. Their results showed why inconsistent or mislead-
ing results occur when fitting the standard Taylor model to inci-
dence data (19,20). Based on the modified power law, it was
shown that the beta-binomial distribution is the appropriate model
for the frequency of aggregated diseased units, rather than the
negative binomial (11). The beta-binomial has been used success-
fully to represent the frequency distribution of virus diseased
plants per quadrat (11,28,31).

In this study, the modified power law, beta-binomial distribu-
tion, and related variance-ratio tests were used to characterize
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the spatial heterogeneity of downy mildew of grape (Vitis labrusca
L.), caused by Plasmopara viticola (Berk. & M.A. Curtis) Berl.
& De Toni in Sacc., in an Ohio vineyard. Downy mildew is one
of the most important diseases of grapes in Ohio and regions
where relative humidity is high and rainfall common (8,25). The
pathogen overwinters as oospores in infected leaf residues that
germinate to produce sporangia in the spring and summer. These
sporangia germinate directly or indirectly to infect leaves. Secondary
spread occurs throughout the growing season, although infection
and sporangia production are highly dependent on environmental
conditions (2,13,14). Because disease intensity is variable among
locations and years, presumably because of variation in weather
conditions, there is considerable interest in developing predictive
systems for timing fungicide applications (25). The proposed sys-
tems use either monitored weather variables (2,8,25) or disease
level threshold (3) to determine whether to apply a fungicide.

To date, predictive systems for downy mildew are still in the
experimental stage. Progress is hindered by lack of information
on density and distribution of downy mildew incidence and sever-
ity in vineyards. In this study, incidence of downy mildew-infected
leaves was assessed in small plots over 3 yr. Incidence was assessed
instead of severity because of the relative ease of identifying and
counting diseased leaves compared to estimating the area of lesions
or proportion of leaves covered by lesions. The objectives of this
study were to: quantify the heterogeneity of downy mildew inci-
dence; determine the effects, if any, of assessment time, year,
and mean disease incidence on heterogeneity; and use information
on heterogeneity to develop an efficient sampling curve. A range
of statistical techniques and parameter estimation methods was
used to achieve these objectives. This is the first detailed study
of the modified power law and beta-binomial distribution for
characterizing heterogeneity of a fungal disease.

MATERIALS AND METHODS

Data collection. The experiments were located in vineyards
at the experimental farm of the Ohio Agricultural Research and
Development Center, The Ohio State University, Wooster. The
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grape cultivar Catawba (planted in 1975) was used in 1989 and
1990, and the cultivar Reliance (planted in 1989) was used in
1992. Each vineyard had six rows spaced 3 m apart with 2.1 m
between plants within a row. Vineyards were partitioned into
18 plots, with three contiguous plants per plot. There also was
one plant between each plot.

The 18 plots were grouped into three blocks with six different
treatments assigned randomly to the plots in each block. For
the purposes of this study, the treatments were used to obtain
different levels of disease incidence, and possibly heterogeneity.
The treatments consisted of spraying the plants from zero to eight
times throughout the season with fungicides, metalaxyl +
mancozeb (Ridomil MZ-58) or captan. Scheduling of fungicide
application was based on an experimental predictive system cur-
rently being tested (13,14; M. A. Ellis and L. V. Madden, unpub-
lished data) that is incorporated into a microprocessor marketed
by Neogen Corporation (Lansing, MI).

In each plot, the leaves on five arbitrarily selected shoots per
plant were assessed visually for symptoms of downy mildew. Thus,
the sampling unit for determination of disease heterogeneity was
the shoot, and there were 15 shoots per plot. Total number of
leaves (n) and diseased leaves (X) were recorded for each sampling
unit. Because of the nature of grape growth, shoots are intertwined
and the exact spatial location of leaves or shoots cannot readily
be specified. The vertical layering of shoots also complicates the
determination of position. Thus, analyses performed (discussed
below) did not rely on spatial location of the observations.

Disease assessment was performed twice per year (Table I).
With the exception of the first assessment in 1989, both times
were late enough for substantial secondary spread to have occurred.

Data analysis—moments. The mean and variance of disease
incidence was determined for each plot, assessment time, and
year. Also, the mean number of leaves per shoot (sampling unit)
was determined. Mean incidence of diseased leaves (p) is given
as:

p=32X;/2n (1)

in which 7 is an index for the i-th shoot. The number of shoots
per plot is represented by N (=15). The summation, therefore,
is for the i = 1,...,N shoots in a plot. The mean number of leaves/
shoot in a plot was calculated as:

i=3n/N (2)

The variance of diseased leaves, v(.X), was calculated according
to the formula of Cochran (5) for variable n:

v(X) = [2(X; — pn)’ /(N — 1). (3a)

Note that pn; is the expected number of diseased leaves on a
shoot. The estimated variance of the proportion of diseased leaves
(v; = Xi/n;)) was obtained by dividing equation 3a by 7> This
variance (=v) can be written as:

v=[Zn}(y;— p))/[A*(N — D). (3b)

TABLE 1. Summary of mean incidence” of downy mildew, caused by
Plasmopara viticola, in grape cultivars Catawba (1989 and 1990) and
Reliance (1992)

Data Assessment

set date Mean  Median Minimum Maximum
1989a /1 0.032 0.018 0.000 0.108
1989b 9/14 0.147 0.032 0.000 0.775
1990a 8/28 0.120 0.039 0.004 0.618
1990b 9/30 0.153 0.049 0.017 0.764
1992a 8/19 0.168 0.139 0.000 0.767
1992b 9/22 0.280 0.178 0.040 0.873

*Incidence is the proportion of leaves on a shoot with symptoms of downy
mildew. There were 15 sampled shoots per three-plant plot and 18 plots
per data set. Statistics shown here are based on mean incidence values
per plot not on individual shoot results within plots.
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The theoretical variance of X for a random (i.e., binomial) dis-
tribution was calculated as:

v(X) = np(l — p) (4a)

and for y as:

ve=p(1 = p)n (4b)

Data analysis—power law. The binary form of Taylor’s power
law (10) was fitted to the variances for the 18 plots at each time
and year. The model can be written as:

log(v) = log(A) + b log[p(1 — p)/ 7] 5)

in which 4 and b are parameters. The independent variable in
equation 5 is the logarithm of the expected variance for a random
(binomial) distribution [=log(v,)]. It should be noted that for
unbounded counts, the Poisson distribution represents a random
pattern, and v, equals the mean per quadrat [=np]). When n
is constant, equation 5 can be written as:

log(v) = log(a) + b log[p(1 — p)] (6)

with @ = An *. Randomness, as represented by a binomial dis-
tribution, is indicated when b = 1 and 4 = 1. Values of b > 1
indicate heterogeneity; therefore, b is used as an index of
aggregation for a collection of data sets.

Ordinary least squares regression was used to estimate log(A4)
and b. Significance in relationships between log(v) and log(v,)
was determined with F tests. The coefficient of determination
(R?) and the mean square error (MSE) were used to determine
the goodness of fit of the model. Residuals (i.e., differences
between observed and predicted log[v]) were plotted against
predicted values to evaluate the appropriateness of the model
(23). Normality of the residuals was assessed using the technique
of Looney and Gulledge (15). Equality of b to 1 was tested with
a 1 test, using the parameter estimate and its standard error. The
alternative hypothesis was that b > 1 (i.e., a one-sided test).

For comparative purposes and because of the importance of
obtaining accurate estimates of A and b, two other approaches
were evaluated for estimating parameters, namely geometric mean
and resistant-line regression. Because both log(v) and log[ p(1 —
p)/ii] are determined with sampling error and neither variable
is clearly the dependent variable in a strict sense, geometric mean
regression has been advocated for these types of data sets (36).
This technique is also called functional regression and central
line regression. Although rare in plant pathology, the technique
has had some use for analyses based on the traditional Taylor
power law. For geometric mean regression, the slope is always
greater than the ordinary least squares (=dependent regression)
slope, unless R = 1.

The slope and intercept of equation 5 also were estimated with
resistant-line regression, which is a nonparametric statistical
method (39). Parameter estimates are less sensitive to outliers
or extreme points than for ordinary least squares regression, and
normality of the residuals is not required.

The effect of treatment on the slope and intercept of equation 5
was assessed with covariance analysis (23). In effect, this consisted
of determining the reduction in the residual sum of squares when
separate intercepts, and then slopes, were calculated for each treat-
ment. F tests were used to test for significant treatment effects.

The consistency of regression results among years and between
times was evaluated by a “reduced versus full model” analysis
(23). The residual sums of squares for each year/time were totaled
(=full model) and compared to the residual sum of squares for
a single model fitted to the pooled data set. An F test was used
for determining significance. All regression analyses were
performed with MINITAB (22).

Data analysis—aggregation indices. The index of dispersion
(D) was calculated as the ratio of observed to theoretical variance,
i.e., D= v(X)/v,(X) (9). (For count data [e.g., number of propa-



gules], the denominator of this expression is simply the mean.)
With the modified power law, if 5= 1 and 4 > I, then aggregation
is not affected by p and A is an overall estimate of D. Significant
departure from randomness was determined with a chi-square
test, in which the test statistic is given by (N — 1)D. If there
is a random distribution, (N — 1)D has a x* distribution with
N — 1 degrees of freedom.

A C(e) test, sensu Neyman (24), also was calculated as described
in Tarone (33). The test statistic is:

= V(XN =1)/[p(1 = p)] — (AN)
[25n(n,— 1)]'?

(7

in which Z is the standard normal deviate. For both the variance
ratio ([N — 1]D) and C(a) tests, the null hypothesis is that the
pattern is random (i.e., the binomial distribution is appropriate).
The alternative hypothesis for the variance ratio test is simply
that the pattern is aggregated. For the C(«) test, the alternative
hypothesis is more specific, namely, that the data have a beta-
binomial distribution (33). Besides testing for significant aggrega-
tion, D and Z were used as indices of aggregation.

Data analysis—discrete distributions. The beta-binomial and
binomial distributions were fitted to each data set that did not
have zero mean incidence. The binomial distribution has one
parameter () that is the (constant) probability of a leaf being
infected. If the binomial distribution was appropriate, p (equation 1)
would be the estimate of .

The beta-binomial can be generated as a compound or gen-
eralized distribution (11,28,31,32) and can be written in several
forms. For instance, the probability that a shoot (=sampling unit)
has x diseased leaves is:

x=1 n—x—1
M(p+i) T (1—p+i6)
i=0 i=

Prob (x=2x=(") = - ®)
Im (1+i0)
i=0

in which II is the product function and i is a counting index.
Here, p is the expected (i.e., mean) probability of a leaf being
infected, because it is not now assumed that 7 is a constant.
The parameter 6 is an index of aggregation, which equals 0 when
there is a random pattern (or binomial distribution) and increases
as aggregation increases. When equation 8 is appropriate, the
data are said to exhibit extra-binomial variation or overdispersion.

Maximum likelihood estimates of p and 0 and their standard
errors were determined with the FORTRAN program previously
described (18). Because n was not constant, it was not possible
to calculate expected frequencies or perform the classic chi-square
goodness-of-fit test. However, it was possible to determine if the
beta-binomial provided a better fit than the binomial using a
likelihood ratio statistic (LRS) (28). The LRS is based on the
log-likelihoods for the two distributions. This test is not very

powerful when N < 20, meaning that the tests may fail to detect
true differences (26). The C(e) test, which does not require maxi-
mum likelihood estimation, is more powerful than the LRS test
at relatively small sample sizes (26).

Sample size. Results from the modified power law (equation 5)
were used to estimate sample sizes for fixed levels of the coefficient
of variation (C = standard error of estimated p divided by p).
Number of shoots, i.e., sample size, is given by:

NZap"’_I(!—p)"’{C'z 9)

in which @ = 4 n” and 4 and b are from equation 5 (12).
For simplicity here, it was assumed that the number of leaves/
shoot (n) was constant,

RESULTS

Disease incidence. Mean disease incidence of downy mildew
in a plot was dependent on the imposed fungicide treatment (data
not shown). Across plots, mean incidence (per plot) ranged from
lows of 0.0-0.04 and highs of 0.11-0.87, depending on the year
and assessment time (Table 1). The first assessment time in 1989
(1989a in Table 1) was much earlier than for the other years,
and incidence was very low in all plots. For all other assessments,
the range of mean incidence values per plot was at least 0.61.
The maxima shown in Table 1 corresponded to plots not sprayed
with fungicide; other values in the table reflect the effects of
fungicides as well as time and year effects.

Power law. There was a significant relationship between log(v)
and log(v,) (=log(p[1 — p]/ 7)) for each data set (Table 2; Fig, 1).
R? values exceeded 0.86, except for 1992b, and residual plots
did not reveal a nonlinear relationship. Tests of the residuals
for normality (15) were not significant (P > 0.10), indicating that
the residuals were normally distributed.

The ordinary least squares estimates of b exceeded | for all
data sets (Table 2) and were significantly greater than 1 (P <
0.05) for all sets except 1992b, in which overall variability was
greater than the other data sets, In this case, one could not reject
the null hypothesis of b being equal to one in favor of the alterna-
tive hypothesis that b was greater than one (P > 0.05). The pre-
dicted values for equation 5 were greater than the predicted values
for a random pattern (4 = 1; b = I; broken line in Fig. 1)
for most of the range of log(v,) for each data set. Standard errors
of the estimates of b generally were less than 11% of the slope
values. Standard errors for the estimates of log(A4) also were low
for all data sets, except 1992b (Table 2).

Estimates of the parameters were quite similar among data
sets (Table 2). An F test based on the full and reduced models
indicated that year and assessment time did not significantly affect
regression results (P > 0.20). Parameter estimates based on the
pooled data (=reduced model), therefore, could be used to describe
the log(v):log(v,) relationship. Moreover, analysis of covariance
indicated that fungicide treatment did not significantly affect
log(4) or b (Table 2). Therefore, although fungicide treatment
affected p, it did not directly affect overall spatial heterogeneity

TABLE 2. Results of fitting the binary analogue of the power law equation (equation 5) to the variance and mean incidence of grape downy

mildew, caused by Plasmopara viticola®

Ordinary least squares regression

Data Geometric mean Resistant line Treatment effects”
set log(A4) (SE) b (SE) R? MSE df log(A) b log(A4) b P(log[A]) P(b)
1989a 0.74 (0.329) 1.220 (0.119) 0.898 0.038 12 0.92 1.287 0.81 1.240 0.55 0.15
1989b 0.87 (0.269) 1.258 (0.103) 0.920 0.040 13 0.94 1.312 0.52 1.147 0.39 0.10
1990a 0.92 (0.187) 1.278 (0.072) 0.952 0.023 16 1.00 1.310 1.25 1.395 0.48 0.54
1990b 1.21 (0.331) 1.447 (0.140) 0.870 0.039 16 1.452 1.551 1.33 1.503 0.42 0.92
1992a 1.46 (0.342) 1.503 (0.156) 0.861 0.045 15 1.712 1.620 1.61 1.579 0.84 0.59
1992b 1.14 (0.638) 1.424 (0.304) 0.578 0.058 16 2.076 1.837 .11 1.410 0.29 0.30
Pooled 0.93 (0.109) 1.296 (0.043) 0.895 0.041 98 1.110 1.370 0.99 1.313 0.50 0.85

“log(A) and b are the estimated intercept and slope of the best fitting line, using various estimation procedures (ordinary least squares, geometric-
mean, and resistant-line regression); SE is the standard error of the estimated parameter (intercept or slope); R? is the coefficient of determination:

MSE is the mean square error; and df is the error degrees of freedom.

*Significance level for the effect of fungicide treatment on the intercept (P[log(A)]) and slope (P(b)) of the power law equation.
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as measured by the power law.

Even though there was significant overall spatial heterogeneity,
as indicated by a good fit of equation 5 to the data and b > 1,
the line for equation 5 crossed the line for a random (binomial)
pattern at low v, (Fig. 1). The crossover occurred at log(v,)*
= log(A)/(l — b). Below this point, observed variance was less

than v, for individual plots, even though log(v) increased with
log(v,) at a rate greater than for a random pattern. For the pooled
data here, log(v,)* = —3.10, corresponding to v,* = 0.0008.
Assuming an »n of 15 (on average), this indicates that the lines
crossed at p = 0.012 at the low end of the observed disease
incidence values.
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Fig. 1. Relationship between the logarithm of observed variance (equation 3b) and the logarithm of theoretical variance for a random pattern
(binomial distribution; equation 4b) for incidence of grape downy mildew, caused by Plasmopara viticola, at each of two assessment times (lowercase
letters) during each of 3 yr. Each point represents a field plot at one sampling time. Solid line represents the ordinary least squares fit to the
data (equation 5; Table 2), and broken line represents the binomial line (i.e., observed variance = theoretical variance). Table 1 contains information
on each disease assessment.

TABLE 3. Percentage of grape plots with significant variance ratio (D) test, C(a) test (Z statistic), convergence of the maximum likelihood estimation
(MLE) procedure, significant likelihood ratio statistic (LRS)?, and the mean value of estimated 6 in relation to categories of incidence of grape
downy mildew

Significant Significant MLE Significant

Incidence variance ratio (D)° Cla) test* convergence LRS test® Mean
class® Count (%) (%) (%) (%) 8

0 8 el
0.00-0.05 41 9.8 14.6 43.9 11.1 0.021
0.05-0.10 16 56.2 50.0 81.2 46.1 0.072
0.10-0.20 21 85.7 90.5 95.2 85.0 0.141
0.20-0.40 10 90.0 90.0 90.0 88.9 0.210
0.40-0.80 9 55.6 55.6 88.9 66.5 0.132°
0.80-1.00 3 100 66.7 100 66.7 0.075

*Test of the beta-binomial versus the binomial.

"Classes end with the indicated value (e.g., 0.10). Classes start with the next highest incidence value above the listed value (e.g., any incidence
value above 0.10).

‘P=0.05.

“No tests were done or distributions fitted when incidence was 0 (no diseased leaves).

“Between incidence of 0.40 and 0.60, mean 6 was 0.273 (based on three plots); between 0.60 and 0.80, mean @ was 0.062 (based on six plots).
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Estimates of log(4) and b using geometric mean regression
were only slightly larger than the ordinary least squares estimates
for most of the individual data sets and the pooled data (Table 2).
The greatest change in parameter estimates was for 1992b, in
which b increased from 1.4 to 1.8. A 1 test of the slope estimate
for 1992b revealed that b was greater than 1 (P < 0.05), unlike
the situation for the ordinary least squares estimate. The resistant-
line estimates of log(A) and b also were very similar to the estimates
from ordinary least squares regression (Table 2). The greatest
difference in b was for 1990a, in which the resistant-line estimate
was 0.12 higher.

Aggregation indices. The degree of spatial heterogeneity for
individual plots varied considerably. The variance ratio test based
on D was significant (P < 0.05) in 48% of the plots in which
p > 0. Likewise, the C(a) test was significant (P < 0.05) in 49%
of the plots. All plots that had an observed variance below the
random or binomial (broken) line in Figure 1 had no indication
of aggregation based on the two tests. It is informative to sum-
marize results based on ranges of mean disease incidence (Table 3).
At very low p (<0.05), significant aggregation was indicated by
D or C(e) in only 10-15% of the plots. At 0.05 < p < 0.10,
about half of the plots indicated significant aggregation. At p
> (.10, over 80% of the plots generally had significant aggregation.

A plot of Z from the C(«) test (equation 7) versus p (Fig. 2)
reveals the variation in downy mildew heterogeneity across indi-
vidual grape plots. At low p, most of the points were below 1.64,
the cut-off for significance. There was a general increase in Z
(or D; data not shown) as p increased, followed by a decrease
at high p. The largest Z values were mostly in the range 0.2
<p<06.

Beta-binomial distribution. The maximum likelihood estima-
tion procedure converged for 71% of the data sets with p > 0.
As with the tests with indices of aggregation, convergence
depended on p (Table 3) and never occurred when the observed
variance was below the binomial variance (Fig. 1). At p > 0.05,
convergence occurred for at least 809 of the data sets. Where
convergence did occur, the LRS indicated that the beta-binomial
provided a better fit to the data than the binomial distribution
in the majority of cases (Table 3). Results of the LRS test agreed
closely with the C(a) test.

Estimates of 6 for the data sets ranged from 0.0 to 0.56. Standard
errors for the estimates were relatively large, reflecting the small
sample size for estimating parameters. Estimates of 8 were highly
correlated with both D and Z (Fig. 3). At Z > 0, there was
a linear increase in @ with an increase in Z (or D).

Sample size. Sampling curves were generated for four values
of C (0.1-0.4) using the pooled estimates of b and log(A) (Table 2;
Fig. 4A and B) and for a random (binomial) distribution of inci-
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Fig. 2. Standard normal statistic (Z) of the C(a) test (equation 7) in
relation to mean disease incidence (p) of grape downy mildew, caused
by Plasmopara viticola. Each point represents a field plot at one sampling
time. Horizontal broken line represents the cutoff (1.64) for significant
extra-binomial variation (P = 0.05).

dence (4 = b = 1) (Fig. 4B). It was assumed that there were
15 leaves per shoot (n = 15), which is close to the overall mean
of 14.4. With a mean incidence of 0.01, nearly 200 shoots would
need to be sampled for a desired coefficient of variation of 20%
(i.e., C = 0.2) (Fig. 4A). At p = 0.20, however, only about 20
shoots would be required.

Sample size based on the power-law results (for a given level
of C) was either less than or greater than sample size for the
binomial case (Fig. 4B). At p > 0.012, more shoots would need
to be sampled compared to the binomial. Fhe opposite would
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Fig. 3. Estimated aggregation parameter (0) of the beta-binomial distribu-
tion (equation 8) in relation to the standard normal statistic (£) of the
C(e) test (equation 7) for grape downy mildew incidence, caused by
Plasmopara viticola. Each point represents a field plot at one sampling
time.
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Fig. 4. Sampling curves for the number of grape shoots required for
estimating mean disease incidence (p) with: A, C = 0.1, 0.2, 0.3, and
0.4, based on the power law (equation 9) with b = 1.3 and a = 0.25
= (8.5)(15") (equations 5 and 6); and B, binomial (a = 157", b = 1)
and power law (a = 0.25; b = 1.3) cases (C = 0.2).
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be true at p < 0.012, because the variance lines crossed at about
this disease incidence (Fig. 1). At p = 0.2, for example, assumption
of a binomial distribution would imply that six shoots (of n =
15 leaves) should be sampled, when, in fact, 20 shoots should
be sampled based on the observed heterogeneity.

DISCUSSION

There are many ways of characterizing the heterogeneity of
unmapped or sparsely sampled discrete data such as plant disease
incidence (4,16,38). Detection and testing of aggregation for single
data sets can be accomplished with statistics based on the index
of aggregation (D), and standard normal Z from the C(a) test,
and the degree of aggregation can be assessed based on the magni-
tude of D and Z. Theoretical frequency distributions, such as
the beta-binomial, can be fitted to data, and estimates of certain
parameters can then be used to measure aggregation (11). More-
over, when there is a collection of data sets, the modified power
law (equation 5) can be used to provide an overall measure of
aggregation (10). Using these methods with the incidence data
of downy mildew, the incidence of disease on leaves was aggre-
gated, but the degree of aggregation was variable and generally
dependent on mean incidence.

It is well established that some indices of aggregation, such
as the variance-to-mean ratio (VM), which measures the number
of organisms “intimately associated” with a randomly chosen
organism (38), are dependent on the mean density of organisms
(4). Larger means result in larger VM values, with all other factors
held constant. The binary data equivalent of VM, D, would also
be expected to vary with the mean, although the largest D values
would be envisioned in the midrange of disease incidence. In
general, this was found for the downy mildew incidence data.
A majority of plots had a large and significant variance ratio
only when p > 0.05 (Table 3) and D had the largest values in
the midrange of p values (data not shown). To our knowledge,
the C(a) test has not been used previously for assessing aggregation
of disease, and the expected relationship between Z of the C(a)
test and mean incidence is unknown. However, we found that
Z varied with p and gave similar results to the tests based on
D. This is not surprising given that Z is a function of v(X) and,
hence, D (equation 7). High percentages of the plots had significant
aggregation, based on Z (and D), for 0.10 < p < 1.0. Overall,
the largest values of Z were found for the midrange of incidence.
Moreover, maximum likelihood estimates of the beta-binomial
0 parameter were near 0 at p < 0.05, somewhat higher at 0.05
< p <0.10 and p > 0.8, and highest in the midrange of disease
incidence (Table 3). Because Z is easy to calculate and gives results
similar to @ (Fig. 3), it can be recommended as a simple and
statistically powerful way of estimating overdispersion in disease
incidence data.

As predicted by the binary form of the power law (11), the
beta-binomial generally provided a good description of the
incidence data in each plot. At p >>0.10, the parameter estimation
procedure was successful in over 909 of the data sets. By
definition, estimation was not possible for the plots with D <
1.0. At low values of incidence, lack of convergence likely was
due to the very few nonzero values in the data set (18). For
most plots, and especially for p > 0.10, the beta-binomial provided
a better representation of the incidence data than the binomial
distribution, based on LRS, in agreement with the C(«) test. The
data from these plots exhibited extra-binomial variation (over-
dispersion). That is, there were more shoots with either a very
small or a very large proportion of leaves with at least one lesion
than would have been expected on the basis of a random pattern,
as described by the binomial distribution. These plots also had
correspondingly fewer shoots with approximately the mean pro-
portion of diseased leaves. The percentages significant were
slightly lower for the LRS than for C(e), reflecting the greater
power of the C(a) test compared to the LRS at small sample
sizes (26). Although N = 15 is a sufficient number of sampling
units for estimating variances precisely (21), and, hence, regressing
log(v) on log(p[1 — p]/7) (35), this number is relatively low for
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distribution fitting (38). Estimates of the parameters can have
high standard errors in this situation. Nevertheless, it is not uncom-
mon to fit this distribution to as few as five sampling units (6)
in other disciplines.

In this study, the binary form of the power law (equation 5)
precisely and consistently represented the overall heterogeneity
of incidence of grape downy mildew. Parameter estimates were
very similar among years and between assessment times within
years, and they did not vary much with different estimation pro-
cedures. In fact, there was no significant difference in regres-
sion results among data sets. Moreover, fungicide treatment of
plants in plots did not significantly affect the model parameters.
The estimated b for the pooled data based on ordinary least
squares regression equaled 1.30, with a 95% confidence interval
of 1.21-1.39. Estimates of b were only slightly higher based on
geometric-mean and resistant-line regression. With higher varia-
tion around the lines, one would expect a greater effect of statistical
method on estimate of b (36). Clearly, b was greater than 1,
the expected value for a binomial distribution and random dis-
persion. The estimate of b was typical for a large number of
organisms that are known to have aggregated spatial patterns
(27,35-37).

The estimate of A for the pooled data equaled 10°% = 8.5,
with a 95% confidence interval (calculated by back-transforming
the confidence interval for log[A4]) of 5.2-13.9. When b =1, A4
is simply the ratio of observed to theoretical variance for a random
pattern (=D). Because b > 1, 4 would be the expected observed
variance (v) if v, equaled 1. Because v, (=p[l — p]/#) cannot
equal 1, log(A) must be interpreted as an overall measure of
the height of the log(v):log(v,) line,

Taylor (34) and Taylor et al (35-37) demonstrated that
aggregation of a large number of organisms varies consistently
with mean density according to the power law and that b is a
species-specific character, although the magnitude can change with
varying conditions. Our results indicate that & for downy mildew
incidence was a stable character, at least for one geographic
location. Also, Taylor et al (37) showed that aggregation at indi-
vidual densities can be predicted with the parameters of the power
law. Analogous predictions can be made using the binary version
of the power law, namely, that aggregation (measured as 6) is
low at p near 0, increases to a maximum, and then declines as
p approaches 1.0 (11). Determination of a simple relationship
between any of the measures of aggregation and p was complicated
here by the magnitude of N and the variable number of leaves
(=observations) per sampling unit (1), which also influences aggre-
gation. Taylor et al (37) postulated that the observed relation-
ship between aggregation and the mean, such as equation 6 in
(11), is a result of the power law. However, it is also likely that
the power law is a result of a fundamental dynamic relationship
between aggregation and the mean. In either case, the advantage
of the power law is that aggregation over all data sets is described
by the fewest number of parameters, namely A4 and b. Other
approaches require calculation of a parameter (e.g., D, Z, or
0) for each data set to characterize aggregation,

Despite the economic importance of the disease and the need
to make management decisions based on environmental or disease
data, there is very little published information on the spatial or
temporal distribution of grape downy mildew. In one study, Blaise
et al (3) assessed aggregation in four commercial vineyards of
V. vinifera during 1 yr by counting the number of lesions per
vine. A standard power law analysis of these counts gave an
estimate of b = 1.6. Like our study, data from Blaise et al (3)
correspond to the situation in which secondary spread likely
occurred. Considering that the sampling units varied between the
studies (shoots versus vines), heterogeneity of lesion counts was
remarkably similar to heterogeneity of disease incidence, as mea-
sured by the appropriate form of the power law. Although either
lesion counts or disease incidence could be used to assess aggre-
gation, in many survey situations it may be more efficient and
easier to determine incidence, especially when severity is low.
If some measure of severity, such as lesion counts, is needed
for management decisions, one could then predict severity if there



was a repeatable relationship between the two (29).

Another study, by Seem et al (30), was concerned with the
development of a sampling procedure for the detection of downy
mildew in vineyards of V. vinifera. In that case, it was assumed
that when disease incidence was very low, disease was distributed
at random. Our finding that the degree of aggregation varies
with mean incidence in such a way that it is highest in the midrange
of incidence and lowest (the pattern then being essentially random)
at low incidence provides support for this assumption. However,
our findings show that it would not be valid to assume randomness
when estimating disease at higher levels of incidence. Our sampling
curve has a different purpose to the scheme of Seem et al (30).
Figure 4b allows for determination of the number of shoots to
sample for estimation of mean disease incidence with a prespecified
degree of precision and takes aggregation into account. Seem
et al (30) were concerned with disease detection and were able
to ignore the problem of aggregation. The two approaches are
complementary, each being appropriate at a different stage in
the disease-management process.

LITERATURE CITED

1. Binns, M. R. 1986. Behavioural dynamics and the negative binomial
distribution. Oikos 47:315-318.

2. Blaeser, M., and Weltzien, H. C. 1979. Epidemiologische Studien
an Plasmopara viticola zur Verbesserung der Spritzterminbesti-
mmung. Z. Pflanzenkr. Pflanzenschutz 86:489-498.

3. Blaise, P., Schumacher, P., and Gessler, C. 1994. Forecast of downy
mildew on grapevine: Sampling disease severity in a vineyard. Pages
42-48 in: Proc. Ist Int. Work. Grapevine Downy Mildew. D. M.
Gadoury and R. C. Seem, eds. N.Y. Agric. Exp. Stn. Special Rep. 68.

4. Campbell, C. L., and Madden, L. V. 1990. Introduction to Plant
Disease Epidemiology. Wiley Interscience, New York.

5. Cochran, W. G. 1977. Sampling Techniques. 3rd ed. John Wiley
and Sons, New York.

6. Crowder, M. J. 1978. Beta-binomial ANOVA for proportions. Appl.
Stat. 27:34-37.

7. Downing, J. A. 1986. Spatial heterogeneity: Evolved behavior or
mathematical artefact? Nature (London) 323:255-257.

8. Ellis, M. A., Madden, L. V., and Lalancette, N. 1994. A disease
forecasting program for grape downy mildew in Ohio. Pages 92-95
in: Proc. Ist Int. Work. Grapevine Downy Mildew. D. M. Gadoury
and R. C. Seem, eds. N.Y. Agric. Exp. Stn. Special Rep. 68.

9. Fisher, R. A. 1970. Statistical Methods for Research Workers. 14th
ed. Hafner Publishing Company, New York.

10. Hughes, G., and Madden, L. V. 1992. Aggregation and incidence
of disease. Plant Pathol. 41:657-660.

11. Hughes, G., and Madden, L. V. 1993. Using the beta-binomial
distribution to describe aggregated patterns of disease incidence.
Phytopathology 83:759-763.

12. Hughes, G., and Madden, L. V. 1994. Aggregation and incidence
of disease: Some implications for sampling. Aspects Appl. Biol. 37:25-31.

13, Lalancette, N., Ellis, M. A., and Madden, L. V. 1988. Development
of an infection efficiency model of Plasmopara viticola on American
grape based on temperature and duration of leaf wetness. Phyto-
pathology 78:794-800.

14. Lalancette, N., Madden, L. V., and Ellis, M. A. 1988. A quantitative
model for describing the sporulation of Plasmopara viticola on grape
leaves. Phytopathology 78:1316-1321.

15. Looney, S. W., and Gulledge, T. R., Jr. 1985. Use of the correlation
coefficient with normal probability plots. Am. Stat. 39:75-79.

16. Madden, L. V. 1989. Dynamic nature of within-field disease and
pathogen distributions. Pages 96-126 in: Spatial Components of Plant

20.

21,

22,
23.

24,

25.

26.

27.

28.

29.
30.

31

32.

33
34.

35.

36.

3%

38.

39,

Disease Epidemics. M. J. Jeger, ed. Prentice Hall, Englewood Cliffs,
NI.

. Madden, L. V. 1993. Aggregation of Colletotrichum acutatum in

response to simulated rain episodes. J. Phytopathol. 138:145-156.

. Madden, L. V., and Hughes G. 1994. BBD—Computer software for

fitting the beta-binomial distribution to disease incidence data. Plant
Dis. 78:536-540.

. Madden, L. V., Louie, R., and Knoke, J. K. 1987. Temporal and

spatial analysis of maize dwarf mosaic epidemics. Phytopathology
77:148-156.

Madden, L. V., Pirone, T. P., and Raccah, B. 1987. Analysis of
spatial patterns of virus-diseased tobacco plants. Phytopathology
77:1409-1417.

McArdle, B. H., Gaston, K. J., and Lawton, J. H. 1990. Variation
in the size of animal populations: Patterns, problems and artefacts.
J. Anim. Ecol. 59:439-454.

Minitab Incorporated. 1991. Minitab Statistical Software: MINITAB
Reference Manual, Release 8, Minitab Inc., State College, PA.
Neter, J., and Wasserman, W. 1974, Applied Linear Statistical Models.
Richard D. Irwin, Inc., Homewood, IL.

Neyman, J. 1959. Optimal asymptotic tests of composite hypotheses.
Pages 213-234 in: Probability and Statistics. U. Granander, ed. The
Harold Crainer Volume, Wiley, New York.

Park, E. W., Seem, R. C., Pearson, R. C., and Gadoury, D. M.
1994, DMCAST: A forecasting model for grape downy mildew
development. Pages 96-102 in: Proc. Ist Int. Work. Grapevine Downy
Mildew. D. M. Gadoury and R. C. Seem, eds. N.Y. Agric. Exp.
Stn. Special Rep. 68.

Paul, S. R., Liang, K. Y., and Self, S. G. 1989. On testing departure
from binomial and multinomial assumptions. Biometrics 45:231-236.
Perry, J. M., and Taylor, L. R. 1986. Stability of real interacting
populations in space and time: Implications, alternatives and the
negative binomial k.. J. Anim. Ecol. 55:1053-1068.

Qu, Y., Beck, G. J., and Williams, G. W. 1990. Polya-Eggenberger
distribution: Parameter estimation and hypothesis tests. Biom. J.
2:229-242.

Seem, R. C. 1984, Disease incidence and severity relationships. Annu.
Rev. Phytopathol. 22:137-150.

Seem, R. C., Magarey, P. A., McCloud, P. I., and Wachtel, M.
F. 1985. A sampling procedure to detect grapevine downy mildew.
Phytopathology 75:1252-1257.

Shiyomi, M., and Takai, A. 1979. The spatial pattern of infected
or infested plants and negative hypergeometric series. Jpn. J. Appl.
Entomol. Zool. 23:224-229. In Japanese.

Skellam, J. G. 1948. A probability distribution derived from the
binomial distribution by regarding the probability of success as
variable between sets of trials. J. R. Stat. Soc. B 10:257-261.

Tarone, R. E. 1979, Testing the goodness of fit of the binomial
distribution. Biometrika 66:585-590.

Taylor, L. R. 1961. Aggregation, variance and the mean. Nature
(London) 189:732-735.

Taylor, L. R., Perry, J. N., Woiwod, 1. P., and Taylor, R. A. J.
1988. Specificity of the spatial power-law exponent in ecology and
agriculture. Nature (London) 332:721-722.

Taylor, L. R., and Woiwod, I. P. 1982. Comparative synoptic
dynamics I. Relationships between inter- and intra-specific spatial
and temporal variance/ mean population parameters. J. Anim. Ecol.
51:879-906.

Taylor, L. R., Woiwod, L. P., and Perry, J. N. 1978. The density-
dependence of spatial behaviour and the rarity of randomness. J.
Anim. Ecol. 47:383-406.

Upton, G., and Fingleton, B. 1985, Spatial Data Analysis by Example.
Vol. 1, Point Pattern and Quantitative Data. John Wiley and Sons,
Chichester, England.

Velleman, P. F., and Hoaglin, D. C. 1981. Applications, Basics, and
Computing of Exploratory Data Analysis. Duxbury Press, Boston.

Vol. 85, No. 3, 1995 275



