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Increasing concentrations of greenhouse gases, particularly
CO,, in the lower atmosphere have led to concern about global
changes in temperature and precipitation patterns. It has been
estimated that mean surface air temperature will rise at a rate
of ~0.3-0.4 C per decade because of the increased greenhouse
effect (2,10). These projections are based on outputs from General
Circulation Models (GCMs). GCMs are coupled ocean—atmosphere
models that simulate the transfer of heat, mass, and momentum
in the lower atmosphere. They are reliable tools for simulating
climate on large temporal and spatial scales, but they have two
important drawbacks that may limit their usefulness for estimating
the potential impact of global warming on biological processes.

First, impact assessments based on GCMs so far have focused
on changes in average temperature, although changes in climate
variability may be equally or more important (9,12). A theoretical
study by Katz and Brown (9) showed that changes in climate
are more closely associated with shifts in the frequency of meteoro-
logical extremes than with shifts in the mean. Furthermore, global
warming may be associated with an asymmetric diurnal tempera-
ture increase, by which daily minima increase while daily maxima
remain unchanged (7,8,12). Therefore, impact assessments that
rely on scenarios involving only shifts in the mean may be mis-
leading. Second, the low temporal and spatial resolution of GCM
outputs makes it difficult to link projections of global warming
to biological response models, such as crop growth or plant disease
models, which require daily or subdaily data as input (3,16,19).
Bonan (3) reviewed several studies that contained sensitivity analy-
ses of ecosystem models to climate change and/ or global warming.
Results from models based on simple, semi-empirical parameteri-
zations of growth at monthly or annual resolutions differed sub-
stantially from more detailed models that explicitly accounted
for biophysical and physiological processes on daily or subdaily
time scales. As recent advancements in computer modeling make
it possible to scale down from monthly averaged GCM outputs
to daily or hourly data with stochastic weather generators (16,19),
the use of more detailed (and presumably more accurate) bio-
logical models for impact assessment of global warming will prob-
ably increase. The computational demands will be high, however,
given the long-term scope of such studies (3).

Interactions between plant pathogens and their hosts occur on
subdaily time scales. For example, spores of many fungal patho-
gens can germinate and infect in less than 12 h. Furthermore,
growth and developmental responses of plant pathogens (e.g.,
to temperature) are often nonlinear (1,15). Nonlinearity may lead
to biased results if averaged data are used for estimating responses
to changes in meteorological conditions (15). This bias may be
amplified by the projected asymmetric increase of daily minimum
and maximum temperatures. Therefore, to arrive at realistic pre-
dictions about the potential impact of global warming on plant
diseases, it may be necessary to specify projected changes in climate
to a resolution that is compatible with the time scale of the under-
lying biological processes. Thus, projections with subdaily resolu-
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tion may be needed to accurately model the potential impact
of global warming on plant pathosystems.

The objective of this communication is to direct attention to
problems resulting from the use of averaged data as input for
biological models when response functions are nonlinear. Because
only a few published impact assessments of global warming focus
on plant pathology (4), our study’s purpose is to make plant
pathologists aware of the potential for improving impact assess-
ments by accounting for changes in variability of temperature
as well as changes in mean temperature.

SIMULATION STUDIES

Consider a hypothetical plant pathogen whose constant-
temperature growth curve is unimodal and skewed to the left
(Fig. 1A), with minimum, optimum, and maximum temperatures
of 0, 20, and 30 C, respectively. Temperature response functions
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Fig. 1. A, Simulated constant-temperature growth curve of a hypothetical
plant pathogen. The curve was generated using equation | (see text) with
the parameter values T,;, = 0 C, T,,,x = 30 C, m = 1.0, and n = 2.0.
B, Simulated variable-temperature growth curves for the pathogen shown
in A. The curves were generated using equation 1 with sinusoidally
fluctuating temperatures as input. Amplitudes were 0 C (solid circles),
5 C (open triangles), and 10 C (solid squares).




with this shape and similar cardinal values are typical for many
plant pathogenic fungi (1,5,11). They can be described mathe-
matically with various nonlinear models (18), of which we chose
the BETE function (1):

Y= P(T_ Tmin)n{ Tmsx — Ty (n
with
(n+mytnm
e R 2
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Here, y is relative growth (on a scale from 0 to 1); T'is temperature;
Thin and T,y are temperature minima and maxima of the organ-
ism, respectively; and n and m are positive parameters. The latter
two parameters influence the curvature (nonlinearity) of the
growth curve and the location of the temperature optimum relative
to minimum and maximum temperatures (1).

Suppose next that temperature fluctuates sinusoidally with a
period of 24 h, a mean of 5, 10, 15, 20, or 25 C, and an amplitude
of 0, 5, or 10 C; and that hourly temperature values are used
in equation | to simulate the growth response of the pathogen.
When growth is then plotted against daily mean temperature,
the resulting curves are flatter than at constant temperatures (Fig.
1B). The magnitude of this effect increases with increasing diurnal
temperature amplitude (Fig. 1B). The magnitude is greatest at
temperatures near the optimum and smallest at the inflection
point of the constant-temperature growth curve (where the growth
response is approximately linear).

It is evident from Figure 1B that there may be large differences
between growth at constant vs. fluctuating temperatures, and that
data on mean temperature without knowledge of the amplitude
of the temperature fluctuation may not be adequate for predicting
growth. For example, if mean temperature increased from 15
to 20 C, growth could either increase (if the amplitude was 0
or 5 C) or decrease (if the amplitude was 10 C). At a mean
temperature of 20 C, relative growth could vary between 1.0 and
0.6, again depending on the amplitude of the temperature fluctua-
tions. Thus, it would be impractical to predict the growth response
of the pathogen shown in Figure 1 based on information about
mean temperature only.

Growth curves can differ in several features, for example in
the location of their cardinal temperatures and/or in the general
shape of the curve. In the following, we systematically, although
not exhaustively, analyze the effects of changes in some of these
factors on simulated growth at fluctuating temperatures. In all
calculations, we employed the same temperature scenarios as
described above.

Increasing nonlinearity (proportional increases in n and m in
equation 1) results in greater differences between growth at con-
stant temperatures and growth at fluctuating temperatures when
all other factors remain constant (Fig. 2). A similar effect is
observed as nonlinearity increases and the relative location of
the temperature optimum is shifted to the right (Fig. 3). (This
can be achieved by increasing the value of n in equation 1 while
keeping m, T, and T, constant.) Differences between simu-
lated growth at constant vs. fluctuating temperatures decrease
with increasing values of T, (Fig. 4) and increase slightly with
increasing values of T};, (data not shown). When the entire growth
curve is shifted to the right by simultaneously increasing T,
and T, by the same increments and keeping n and m constant,
the differences are also reduced (Fig. 5) if the temperature treat-
ments remain otherwise unchanged. In summary, differences
between growth at constant temperatures and growth at fluctu-
ating temperatures are greatest when the mean temperature is
close to the cardinal temperatures of the organism and/or when
the temperature range over which the growth response is approxi-
mately linear is narrow. This suggests that errors resulting from
the use of mean temperature for estimating growth are greater
for cold-adapted organisms than for warm-adapted organisms,
and for organisms with a highly nonlinear growth curve compared
to those with a wide temperature range at which the growth
response is linear.
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Fig. 2. Effects of increasing nonlinearity of the growth curve on relative
growth at constant vs. fluctuating temperatures. A, Simulated constant-
temperature growth curves for different combinations of the parameters
n and m (broken line m = 0.5, n = 1.0; solid line m = 1.0, n = 2.0;
dotted line m = 2.0, n=4.0). B-D, Simulated variable-temperature growth
curves for different combinations of the parameters n and m. All other
parameter values as in Figure 1. The curves were generated using equation |
(see text) with sinusoidally fluctuating temperatures as input. Amplitudes
were 0 C (solid circles), 5 C (open triangles), and 10 C (solid squares).
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Fig. 3. Effects of increasing nonlinearity of the growth curve and shifts
in the temperature optimum of the pathogen on relative growth at constant
vs, fluctuating temperatures. A, Simulated constant-temperature growth
curves for different values of the parameter n (broken line n = 1.0; solid
line n = 2.0; dotted line n = 4.0). B-D, Simulated variable-temperature
growth curves for different values of the parameter n. All other parameter
values as in Figure 1. The curves were generated using equation 1 (see
text) with sinusoidally fluctuating temperatures as input. Amplitudes were
0 C (solid circles), 5 C (open triangles), and 10 C (solid squares).
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Fig. 4. Effects of increasing maximum temperature ( Tp,,) of the pathogen
on relative growth at constant vs. fluctuating temperatures. A, Simulated
constant-temperature growth curves for different values of T, (broken
line Tpax = 25 C; solid line Ty = 30 C; dotted line Ty = 35 C).
B-D, Simulated variable-temperature growth curves for different values
of Tax. All other parameter values as in Figure 1. The curves were gener-
ated using equation 1 (see text) with sinusoidally fluctuating temperatures
as input. Amplitudes were 0 C (solid circles), 5 C (open triangles), and
10 C (solid squares).
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Fig. 5. Effects of increasing minimum (7},;,) and maximum temperature
(Tax) of the pathogen on relative growth at constant vs. fluctuating
temperatures. A, Simulated constant-temperature growth curves for
different values of T, and T, (broken line T,;, = 0 C, T, = 30
C; solid line Ty, = 5 C, Tpax = 35 C; dotted line Ty, = 10 C, Trag
=40 C). B-D, Simulated variable-temperature growth curves for different
values of T, and Tpax. All other parameter values as in Figure 1. The
curves were generated using equation | (see text) with sinusoidally
fluctuating temperatures as input. Amplitudes were 0 C (solid circles),
5 C (open triangles), and 10 C (solid squares).

0

CONCLUSIONS

Two general conclusions can be drawn from the examples given
in this communication. First, there may be substantial differences
between the growth of plant pathogens at constant temperatures
and the growth at fluctuating temperatures. And second, data
on mean temperature without information about the amplitude
of the temperature fluctuations may not be sufficient for predicting
growth, On the first point, differences between growth or develop-
ment at constant vs. fluctuating temperatures have been found
experimentally for insects (6,20), microorganisms (13,14), and
plants (17). Mostly, variable-temperature growth curves were
flatter than constant-temperature growth curves. We reported
recently that temperature had only a small effect on the latent
period of lettuce downy mildew (Bremia lactucae Regel) at fluctu-
ating temperatures, although a strong interaction between temper-
ature and latent period was observed in experiments with constant
temperatures (14). As shown in the present study, these observa-
tions can be explained, at least in part, with a basic property
of nonlinear growth: average inputs (e.g., in temperature) will
not result in average outputs (e.g., in growth). On the second
point, it may be impractical to predict the magnitude and direction
of the growth response of an organism if only information about
changes in mean temperature is available. This applies particularly
to cold-adapted organisms and to organisms with a highly non-
linear growth curve. This result has implications for all assess-
ment studies of climate change and/or global warming, in which
projections with averaged data are used to estimate or simulate
biological responses that are nonlinear. Researchers need to
become more aware of scaling problems imposed by nonlinearity,
which may constrain their ability to translate large-scale, low-
resolution data (such as GCM outputs) into information that
is relevant to biological or physiological processes (such as inter-
actions between plants and their pathogens). It will be a challenge
for climate change researchers to reconcile physiological and bio-
physical approaches to modeling biological processes with the
long-term approach to modeling global warming.
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