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ABSTRACT

Hau, B., Amorim, L., and Bergamin Filho, A. 1993. Mathematical functions to describe disease progress curves of double sigmoid pattern. Phytopathology

83:928-932.

Ten mathematical functions used to describe disease progress curves
of double sigmoid pattern were tested using data from epidemics of
sugarcane smut. Four of the functions represent the sum of two simple
equations (logistic + logistic, Gompertz + Gompertz, monomolecular
+ logistic, and monomolecular + Gompertz); the other six functions
are generalizations of simple models (logistic, monomolecular, and
Gompertz) with four and five Farameters. For all the functions, high
coefficients of determination (R* > 0.95) were obtained in the nonlinear

regression analyses of the progress curves of sugarcane smut. To choose
the most appropriate function, the coefficients of determination, the
residual sums of squares for error, the biological meaning of each param-
eter, and the accuracy in estimating the upper asymptote were utilized.
The generalized monomolecular function and the generalized Gompertz
function, each with five parameters, were considered the most useful
functions to fit disease progress curves of sugarcane smut.

Some growth processes in nature are characterized by separate
and distinct phases, each with a unique growth rate. The growth
rates are frequently fast during the first and third phases, while
the rate between phases may be rather slow. The growth curves
resulting from such processes have a typical double sigmoid
pattern, sometimes with a saddle point (a point of inflection with
horizontal slope).

Processes with these properties have been observed in different
disciplines in agriculture (for example, in the accumulation of
sugar in sugar beets [24]). Most examples are related to the growth
of tree fruits, e.g., the diameter of apricots (15), the diameter
and fresh weight of coffee berries (18), and the fresh weight of
sour cherries (7,23). In phytopathology, curves with double
sigmoid pattern have been found, e.g., the cumulative spore counts
of Puccinia coronata (3), the disease progress curves of Verti-
cicladiella procera in Pinus and other tree species (14), Fusarium
oxysporum f. sp. vasinfectum combined with Meloidogyne
incognita in cotton (22), Phytophthora capsici in pepper (2),
Sclerotinia sclerotiorum in sunflower (9), Ustilago scitaminea in
sugarcane (1), Botrytis cinerea in grapes (19), and Puccinia
graminis subsp. graminicola on perennial ryegrass (26).

Working with sugarcane smut, Amorim and Bergamin Filho
(1) divided the disease progress curves into two parts that were
described separately. We will use their data to introduce mathe-
matical functions to approximate the entire progress curves with
double sigmoid pattern without splitting the data set. These
functions are either sums of two simple functions (the logistic,
the monomolecular, and the Gompertz functions) or generali-
zations of these simple growth functions.

MATERIAL AND METHODS

Disease values. The severity of smut in sugarcane was deter-
mined in an experiment begun in February 1985 at the pathology
farm of the Copersucar’s Technology Centre in Primeiro de Maio,
Parana, Brazil. The experiment consisted of two treatments
(inoculated and control) with five cultivars (NA56-79, SP71-799,
SP71-1406, SP71-6163, and SP70-1143) and three replicates. A
detailed description of the experiment can be found in Amorim
and Bergamin Filho (I).
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During five consecutive years, beginning 70 days after planting
and 30 days after harvesting, biweekly or monthly assessments
were made of disease severity, expressed as the number of whips
(whiplike sori that arise either from the terminal meristem or
from lateral shoots) per hectare. Ten functions used to generate
double sigmoid pattern were fitted to all disease progress curves.
The severity of sugarcane smut was used as dependent variable
v (whips per hectare), and the time, ¢, measured in days after
harvest, was used as the independent variable.

Mathematical analyses. Sum of simple functions. If we assume
that double sigmoid curves are the result of two consecutive but
overlapping growth processes, then the curves can be
approximated by the sum of two simple growth functions. For
the logistic equation, the sum is given by

yot) = pn/{l +exp[—(pi2 + p130)]}
+ pa/{l +exp[—(p2 + pudl} . (D

This combined equation has six parameters, three for each of
the two phases. The parameters p;; and p,, are the upper
asymptotes, p;, and p,, are related to the initial level of disease,
and p,; and p,; are the rates of the two processes. If the rate
parameters p,; and p; are both positive, the slope of this function
is always greater than zero so that neither extreme values (local
minima or maxima) nor a saddle point exist.

In a similar way, a combined equation for two Gompertz
functions can be constructed:

Yaa(t) = puexp{—exp[—(pi2 + pia)]}
+ puexp{—exp[—(pxn + p2an)]} - (2)

If the sum of two monomolecular functions is formed, the first
function will be zero at t0; = —p,,/p;; and the second at 0,
= —pyp/py; where 10, > 10;. The sum of both functions will
be zero at ¢0;, which cannot be determined directly but which
lies between the 10, and 10,. For 10, < ¢t < 10,, the combined
function will be negative due to the high negative values of the
second part, while the first part is positive. For 10, < r < 10,,
the combined function and the first part are greater than zero;
the second part is still less than zero. For ¢ > 10,, both parts
and, of course, their sum are positive. It is, however, possible
to combine a logistic and a Gompertz function in any sequence
or to combine an initial monomolecular function and one of the



two other functions in this sequence. The monomolecular +
logistic combination produces

Yue() = pufl — exp[—(pi2 + pia)]}
+ pa/ {1 + exp[—(pa + p1st)]} , (3)

and the monomolecular + Gompertz combination produces

Yuc(t) = pufl — exp[—(pi2 + p1at)1}
+ p;.(exp{—exp[—{ pnt Pzaf)]}) . (4)

Generalization of simple functions. The generalization of simple
growth functions will be demonstrated using the logistic function
as an example. For the logistic curve, the generalization was
proposed by Pearl and Reed (20) and later intensively used by
Wingert (27) and Kretschmann and Wingert (13) who applied
the function in human and veterinary medicine. The generalized
logistic function can be written as y; (1) = p,/{l + exp[—P(0)]}
where P(¢) is a polynomial of the third degree P(1) = p, + pst
+ pat® + pst®. The parameters of the equation are p, to ps and
the independent variable is time r. The parameter p, is the upper
asymptote, p, is related to the initial disease, i.e., p; = In{y;(0)/
[Py — y1(0)]}. The usual logistic equation can be deduced by setting
P4 and ps to zero, and in this case, p; is the usual infection rate.

For processes that increase from a low level and approach
the upper asymptotic value p;, the parameter value of ps must
be greater than zero. To determine the extreme values of this
function, the first derivative is set to zero. The equation dy,(1)/
dt = 0 has the same solution as the quadratic equation dP(r)/
dt = py + 2pg + 3pst® = 0. Because we are dealing with
monotonically increasing curves, the discriminant of the quadratic
equation D = p,> — 3p;ps has to be less than or equal to zero.
If D <0, no local minimum or maximum exists and the slope
of the curve is always positive. If D = 0, the curve has a point
of inflection with a horizontal tangent, i.e., a saddle point, that
occurs at time 1, = —p4/(3ps). The formula of the discriminant
D can be used to set ps = p,’/(3p;) if a saddle point is desired.
Thus, two generalized logistic functions with four and five
parameters can be constructed, respectively, as

i) =pi/{l + exp(—[ p2 + pat + put® + pi /3p)]}  (5)
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Fig. 1. Observed (circles) and predicted (solid lines) disease progress curves
of sugarcane smut (number of whips per hectare X 1,000) in the third
ratoon of the relatively susceptible cultivar NA56-79 in the treatment
with inoculation. Curves are calculated by the sum of two simple functions:
A, logistic + logistic, B, Gompertz + Gompertz, C, monomolecular +
logistic, and D, monomolecular + Gompertz.

and

v =p/{1 +exp[—(po+pst + pat® +ps)}.  (6)

In a similar way, the monomolecular and the Gompertz
functions can be generalized. The properties outlined for the
logistic growth are valid without changes for the two other
functions, the generalized monomolecular with four and five
parameters,

yult) = pi {1 —exp[—(py + pst + pa® + p £*/3p)1} (D

and

yult) = p) {1 — exp(—(p2 + p3t + pat® + pst)]} (8)

and the generalized Gompertz function with four and five
parameters

ye(t) = pi (exp{—exp[—(p2 + pst + pat® + pi’ £*[3py)]}) (9)

and

ya() = py (expl—exp[—(p, + pst + pst® + pst)]}) . (10)

Fitting the functions to the temporal increase in severity of
sugarcane smut. The fitting of the 10 mathematical functions
described above to the progress curves for sugarcane smut was
made by nonlinear regression, utilizing Marquardt’s compromise
procedure. Two statistical software packages were used: PlotlT
(Scientific Programming Enterprises Haslett, MI) (6), which
includes the generalized monomolecular and logistic functions,
and BMDP (5).
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Fig. 2. Observed (circles) and predicted (solid lines) disease progress curves

of sugarcane smut (number of whips per hectare X 1,000) in the third

ratoon of the cultivar NA56-79 in the treatment with inoculation. Curves

are calculated by generalized functions: monomolecular with A, four and

B, five parameters; logistic with C, four and D, five parameters; and
Gompertz with E, four and F, five parameters.
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RESULTS

Disease progress curves. The progress curves, i.e., cumulative
number of whips, of the more resistant cultivars SP71-799 and
SP70-1143 were sigmoidal. In contrast, disease progress curves
were of double sigmoid pattern for the three cultivars NA56-
79, SP71-1406, and SP71-6163 from the first to the fourth ratoon.
(“Ratoon” refers to a shoot rising from a sugarcane crown after
harvesting, the first ratoon being the sprout after first harvest).
For the 24 progress curves of double sigmoid pattern (3 cultivars
X 4 ratoons X 2 treatments, i.e., inoculated and control treat-
ments), all 10 functions had good fits to the data. As an example,
consider the disease progress curve for cultivar NA56-79 in the
third ratoon for the inoculated treatment (Figs. 1 and 2). Predicted
curves using the sum of two simple functions (Fig. 1) as well
as those calculated from the generalized functions (Fig. 2)
described the observed data equally well. Little variation was
found in the values of the coefficients of determination (R?) and
in the residual sums of squares obtained for the 10 different
functions (Table 1).

Results of the analyses carried out with the other cultivars
were similar to those found for NA56-79. For cultivar SP71-
1406, the R? values varied from 0.977 to 0.999 for the treatment
with inoculation and from 0.954 to 0.999 for the control treatment,
with data from the first to the fourth ratoon. For cultivar SP71-
6163, the range for R® was 0.959-0.999 (inoculated) and
0.971-0.999 (control). Also, residual sums of squares, obtained
for the different functions, were similar for each curve analyzed.

Estimated values of the upper asymptotes, however, sometimes
differed markedly from the observed maximum values (Table 2).
Asymptotic values estimated for the sum of two simple functions
were, in most cases, higher than the observed values, while for
the generalized functions, the asymptotes were lower (Table 2).

To compare generalized functions with five parameters with
those functions consisting of the sum of two simple functions,
the different number of parameters should be taken into consider-
ation. For instance, it was possible to reduce the number of
parameters from six to five for the sum of two functions by

assuming that both growth processes have the same rate, i.e.,
P13 = P

Rate curves. The infection rate is usually given by the slope
of the disease progress curve after a suitable transformation. As
an example of this approach, we chose the generalized Gompertz
function and the sum of two Gompertz functions with the same
rates, i.e., pj3 = pp. Observed and predicted values were
transformed with a Gompertz transformation in which the last
field observation was used as the maximum disease level to create
relative figures. The goodness-of-fit of both functions, each with
five parameters, were similar (Fig. 3A). The infection rate was
variable in time due to the nonlinear shape of the curves (Fig.
3B). In addition, the data and the curves reflect a graph that
can be generated by a polynomial of a third degree, which is
used in the generalized functions. The rates in dependence on
time for both functions can be determined under the assumption
that a Gompertz function with variable rate r(¢) is given. From
the differential equation for the Gompertz function with the
maximum disease level y,.,, the rate function can be calculated
as (1) = (dy/ d)/ { Y[In( ymax) — In( »)]}. For the generalized Gompertz
function, y is replaced by y; and yn.x by p;. The rate is then
given by r(t) = dP(1)/ dt = p; + 2pst + 3pst®, which is a parabolic
function of time. By setting y to yg and yy., to py; + pay, the
rate function for the sum of two Gompertz functions can be
determined. However, r(¢) in this case is a rather long mathematical
expression and is difficult to interpret. The representation of r(r)
for the observed data and for the two functions analyzed can
be seen in Figure 3B. The points represent the rate values cal-
culated between two consecutive observations. The generalized
Gompertz function with the rate function given by the parabola
showed better agreement with the rates calculated from actual
data than the sum of two Gompertz functions. The graphs of
both functions were similar from day 50 to day 150 but were
distinct at the beginning and at the end of the epidemic (Fig.
3B). While the rate function of y; was a parabola and rates were
unlimited in the early and the late phases of the epidemic, the
rate of y;; approached asymptotic values in both phases. Both
asymptotic values were identical and corresponded to the one

TABLE 1. Coefficients of determination (R?) and residual sum of squares (SS) of 10 functions fitted to the disease progress data of sugarcane
smut (number of whips per hectare) in four ratoons on the cultivar NA56-79 in the treatment with inoculation

Ratoon 1 Ratoon 2 Ratoon 3 Ratoon 4
Function R’ SS R’ SS R’ SS R’ SS
Logistic + logistic 0.990 88.5 0.997 18.4 0.982 286.0 0.999 3.1
Gompertz + Gompertz 0.995 45.9 0.997 16.1 0.987 191.0 0.999 1.2
Monomolecular + logistic 0.998 15.8 0.997 19.3 0.992 125.0 0.999 4.0
Monomolecular + Gompertz 0.998 13.8 0.997 15.9 0.991 139.0 0.999 0.7
Generalized logistic (4 parameters) 0.981 174.0 0.987 752 0.976 370.0 0.991 54.4
Generalized logistic (5 parameters) 0.985 134.0 0.988 69.2 0.979 324.0 0.998 13.6
Generalized monomolecular (4 parameters) 0.998 20.4 0.995 26.4 0.980 310.0 0.990 58.2
Generalized monomolecular (5 parameters) 0.998 16.7 0.995 25.0 0.992 122.0 0.999 6.9
Generalized Gompertz (4 parameters) 0.991 72.2 0.992 48.8 0.979 3110 0.991 53.9
Generalized Gompertz (5 parameters) 0.993 59.5 0.992 429 0.985 228.0 0.999 6.1

TABLE 2. Observed and estimated upper asymptotes of the disease progress data of sugarcane smut (number of whips per hectare X 1,000) in

four ratoons on the cultivar NA56-79 in the treatment with inoculation

Estimated upper asymptote

Function Ratoon | Ratoon 2 Ratoon 3 Ratoon 4
Logistic + logistic 82,2 105.5 139.0 95.1
Gompertz + Gompertz 83.8 108.1 169.9 96.7
Monomolecular + logistic 78.5 102.5 136.9 94.7
Monomolecular + Gompertz 80.3 105.7 138.7 96.3
Generalized logistic (4 parameters) 74.8 97.4 124.8 91.0
Generalized logistic (5 parameters) 75.4 97.2 125.2 92.5
Generalized monomolecular (4 parameters) 78.7 99.2 126.6 92.5
Generalized monomolecular (5 parameters) 78.4 99.3 127.8 94.6
Generalized Gompertz (4 parameters) 75.9 98.0 126.0 93.3
Generalized Gompertz (5 parameters) 76.3 98.0 125.4 91.6
Observed 78.5 100.6 126.8 94.4
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infection rate estimated for both parts of the disease-progress
curves. Obviously, the actual values of r(f) at the beginning and
the end of the epidemic have only little effect on the growth
curves, because both predicted curves were quite similar although
their rates differ. This was due to the fact that in the beginning
there was no disease, and in the end the maximum disease level
was nearly reached.

It can be shown that for all of the generalized functions with
five parameters, the rate function is given as (1) = p; + 2p,t
+ 3pst®. Following the same reasoning, r(t) = p; + 2pat + ( pi’/
p3)t” for the generalized functions with four parameters. The
graphs of r(f) obtained with the generalized monomolecular
function (Fig. 4A) and Gompertz function (Fig. 4B) with five
parameters for cultivar NA56-79 in the first to fourth ratoon
were similar. The infection rates were high in the beginning,
declined with time until they reached minimum values (equal or
close to zero) at approximately 150 days, and thereafter they
started increasing again.

DISCUSSION

Sum of simple functions. When dealing with two consecutive
growth processes, it is natural to build the sum of two simple
growth functions to describe the whole development mathemati-
cally. For each subprocess, a growth function with three
parameters can be determined that can have biological meanings,
i.e., asymptotic value, initial condition, and rate parameter, Thus,
six parameters can be estimated from the observed data, and
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Fig. 3. A, Observed (circles) and predicted disease progress curves of
sugarcane smut in the third ratoon of cultivar NA56-79 in the treatment
with inoculation using the generalized Gompertz function (—) and the
sum of two Gompertz functions (- - -). The smut data (number of whips
per hectare X 1,000) were divided by the last field observation as maximum
disease level (V) and then transformed with —In[—In(y/yma)]. B,
Observed (circles) and predicted infection rates for the same data set
using the generalized Gompertz function (—) and the sum of two Gompertz
functions (- - -).

accordingly, a good fit to the data can be expected. Although
the sum of simple functions produced the best fit to the observed
data, the estimated asymptotes sometimes differed markedly from
the observed values and had only a low precision (Table 2).
Therefore, the combined process was described very well, but
the interpretation of each subprocess was completely misleading.
In addition, in this type of function a high correlation can be
observed between the two parameters p;,, containing the informa-
tion on the initial condition, and p;;, the rate parameter. This
means that alterations of the infection rate can be compensated
for by changes of the initial disease and vice versa, without causing
significant deviations in the goodness-of-fit. In fact, when the
logistic + logistic function was fitted to the data of cultivar NA56-
79 (first ratoon) by using fixed rates of 0.07, 0.08, 0.09, 0.10,
and 0.11 per day for both parts, all resulting functions showed
good fit to the data (R* = 0.981, 0.984, 0.985, 0.984, and 0.982,
respectively). The consequence of this high intercorrelation with
respect to data interpretation cannot be overlooked (16,17). For
instance, the infection rates calculated for this type of function
may not represent an adequate component for the comparison
of cultivars, since their estimated values are related to the
parameter p;, that represents y(0).

Generalized functions. Generalized functions of the mono-
molecular, logistic, and Gompertz functions generated curves of
similar shape (Fig. 2). The similarity among the generalized
functions can be shown by introducing the same parameter values
in the generalized equations. The resulting curves (Fig. 5) were
different only at the beginning of the epidemic. Over time, the
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Fig. 5. Disease progress curves simulated with the generalized mono-
molecular, logistic, and Gompertz functions using the same parameter
values: p, = 1, p, = —0.9, p; = 0.04878, p, = —0.0003286, and ps =
0.0000007497. The negative values calculated with the monomolecular
function are omitted.
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calculated function values came closer together and finally
converged at the same upper asymptote (Fig. 5). We always
analyzed progress curves for sugarcane smut starting from the
appearance of the first symptoms. The initial phase with the
distinct behavior of the functions was disregarded.

Generalized functions can be considered as simple functions
with variable infection rates without inferring the biological nature
of the pathosystem from the fitted functions (4,10,21). Variable
infection rates have been discussed by Waggoner (25), Jeger (10),
and Campbell and Madden (4) to explain irregular growth curves
in monocyclic as well as in polycyclic diseases. In polycyclic
diseases, the infection rate may vary with host susceptibility and
also with environment (8,12,25). However, the variations of the
infection rate due to inoculum, environment, and host variability
seem to be more important for monocyclic diseases (4). In theoret-
ical analyses of epidemics caused by root pathogens, Jeger (10)
used different functions, e.g., linear and exponential, to describe
the infection rate as a function of time. In our case, the infection
rates were parabolic functions of time.

For sugarcane smut, the changes of the infection rates during
epidemics may be related to variations either of the inoculum
present in the soil or of the rate of tiller emergence. In the initial
phase of the crop, the soil inoculum declines with teliospore
germination, which may or may not result in successful infections.
Starting from the appearance of the first whips and pathogen
sporulation, the inoculum increases again, which may raise the
infection rate. However, another aspect should be considered.
Since the progress curves for smut obtained in different years
and with different cultivars were similar (1), the host growth habit
may be related to disease progress. Thus, variations in the infection
rate might also be explained by changes in the tillering of the
sugarcane as the crop cycle proceeds. In fact, in the initial phase
of each crop cycle, the tiller number increases exponentially. Peak
population is reached at the end of this phase, which is followed
by the second phase when death predominates. After this phase
is completed, a more or less stable population survives until harvest
(11). The effect of sugarcane tillering on the infection rate has
not been investigated in this pathosystem.

By using the generalized functions, the transition time between
the first and the second wave of the disease progress curve (saddle
point) can be estimated by the expression —p,/(3ps), which corre-
sponds to the time when the rate is at its minimum. Sometimes,
however, when the functions fit data that do not reflect two
sigmoid curves, the second wave is generated outside the observed
time range and has no biological meaning. Therefore, the time
of the transition should be interpreted with caution when disease
progress curves are compared.

The generalized functions with the polynomials in the exponents
are difficult to explain from a biological point of view. However,
if they are treated as simple functions with parabolic infection
rates over time, they may provide important information in order
to understand and compare curves in the Ustilago scitaminea-
sugarcane pathosystem. Therefore, we suggest application of
either the generalized monomolecular or the generalized Gompertz
function in the more flexible form with five parameters in analyses
of progress curves for sugarcane smut.
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