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ABSTRACT

Ferrandino, F. J. 1993. Dispersive epidemic waves: I. Focus expansion within a linear planting. Phytopathology 83:795-802.

The three-dimensional, turbulent dispersal of airborne spores yielded
epidemiological contact distributions characterized by a length scale that
continually increased with increasing downwind distance. This behavior
was due to the escape of spores from the plant canopy into the faster
moving air above. Such contact distributions approached an inverse power
law of distance at large distances, Simulated epidemics based on this
type of spore dispersal exhibited spatial disease gradients that became
more shallow as the epidemic progressed. Isopathic velocities were related

linearly to distance from the focus of disease, irrespective of disease
severity. Thus, the leading edge of this dispersive epidemic wave propa-
gated more quickly than did the trailing edge; as a result, the wave spread
out in space with increasing time. This behavior contrasted the constant
isopathic velocities characteristic of the traveling wave description pre-
dicted by spatial contact distributions of an exponential order that had
a bounded length scale. A traveling wave description is appropriate if
the spatial coordinate is log-transformed first.

The spread of disease from an initial point of infection depends
on the dispersal of a propagule from an infected leaf to an unin-
fected leaf at some distance. The probability per unit area of
target leaf that a spore released from a mother lesion will cause
a daughter lesion at distance r is termed the contact distribution,
CD(r) (Table 1). The nature of the ensuing epidemic is surprisingly
sensitive to the limiting behavior of this function at large distances.
Mollison (30) showed that an epidemic can take the form of
a traveling wave only if the tail of the contact distribution is
of an exponential order such that

Iifn [CD(r) exp(kr)] — 0 for some k > 0. N

If the the condition expressed in equation | holds true, then the
contact distribution can be characterized by the exponential length
scale, 1/k,,,., in which &, is the largest value of k for which
equation 1 holds true.

To model the spread of disease from an infected plant within
a row of plants, Minogue and Fry (27-29) assumed that as
propagules moved in both directions away from the source, a
constant fraction, p, of these propagules was deposited per plant.
The deposit on the n" plant, CD,, was given by a discrete function
(CD, = p(1 — p)"/(2 — p)—the double geometric distribution).
Within the limit of infinitesimally small plant size, Ar, this is
equivalent to a negative exponential function of distance (r =
nAr) from a foci of disease (i.e., CD = a exp(—a|r|)/2, in which
a = —In(l — p)/Ar, which in the limit gives a = p/Ar). Either
of the above expressions satisfies equation | with an exponential
length scale equal to 1/a. The resulting epidemic could be de-
scribed as a traveling wave that was approximately logistic in
both time and space (14,37). The extension of the above model
to two-dimensional spread of disease should account for the radial
divergence of spore paths. McCartney and Bainbridge (26) sug-
gested that a simple division by 27r would be appropriate for
this geometry (i.e., CDyy = a exp(—a| r|)/(27r)). Such a CD
satisfies equation 1 with an exponential length scale equal to
1/a. Epidemics based on this type of dispersal also can be de-
scribed as traveling waves (F. J. Ferrandino, unpublished data).

Spore trajectories have been described by van den Bosch et al
(40,41) as a two-dimensional, random walk. This assumption leads
to diffusive spread away from a focus of disease. The combination
of diffusive spread with diffusion coefficient w (Table 1) and a
constant relative deposition rate, 8 (Table 1), leads to a modified
Bessel function form for the contact distribution (i.e., CD, =
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8 Ko[(26/ w)"*r]/ (srw), in which K, is the modified Bessel function
of the second type of order zero; [1]). Once again the condition
expressed in equation | is satisfied, and the ensuing epidemic
takes the form of a traveling wave (39). The added assumptions
for this description to be valid are that the vector averaged wind
velocity is zero and the length of time during which spores remain
airborne is much larger than the time scale for changes in spore
transport direction.

These models all ignore spore movement in the vertical direction
(i.e., airborne spores are implicitly assumed to travel within the
plant canopy), leading to the assumption that the relative rate
of spore deposit per unit of time is constant. In reality, the motion
of air within and above the plant canopy is three-dimensional
(34,38). As spores are advected downwind, they are mixed ver-
tically. Eventually, some spores escape from the plant canopy
into the free air above, where they are not subject to deposition.
The probability of an airborne spore being above the plant canopy
increases with increasing downwind distance, and, therefore, the
relative rate of spore deposition must decrease. The net effect
of spore escape is steeper dispersal gradients near a source, due
to vertical dilution of the plume of airborne spores, and a com-
plimentary increase in deposition at larger distances, due to the
eventual return of the escaped spores to the canopy. In other
words, spores that escape close to the source are deposited over
great distances.

Based on Sutton’s theory of atmospheric dispersion (36),
Gregory described the effect of vertical mixing on dispersal gra-
dients for the spores of many plant pathogens (22,23). Cham-
berlain (11) and Waggoner (43) modified these results to account
for depletion of airborne spores due to deposition. They obtained
predicted contact distributions that approach an inverse power
law of distance from the point of release at large distances and
that do not fulfill the condition expressed in equation 1 (3,4,6,
7,9,15,32). The effect of such a dispersal function on focus expan-
sion when multiple infection is not important has been studied
(8). However, the impact of spore escape on more general epi-
demics has not been investigated.

It is the objective of this paper to use a physical model that
incorporates the effects of spore escape on dispersal to 1) examine
the influence of turbulent intensity and deposition rate on the
validity of the traveling wave description and 2) describe the ob-
served epidemiological behavior when traveling waves are not
permissible and dispersive waves occur.

METHODS AND MATERIALS

Dispersal. 1 first considered a steady-state plume of spores
resulting from a continuous spore release from an infinite ground-
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level line source located on the y-axis (z = 0, x = 0). For the
air above the plant canopy, where there is no deposition, the
number of spores in a given volume of air will remain constant:

dF,|dx = —(9F,|dz) )

in which F, and F, (Table 1) are the fluxes of spores in the
x and z directions, respectively. Let C(z,x) (Table 1) be the aerial
concentration of spores at height z at a downwind distance, x,
from the line source. In addition, let u(z) (Table 1) be the horizontal
wind speed and K(z) (Table 1) be the coefficient of vertical
turbulent mixing at height z. The horizontal flux, F,, due to
advection will be equal to the product u(z) C(z,x), and the vertical
flux, F,, is given by —K(z) d/d2[ C(z,x)]. Using these definitions,
equation 2 becomes

u(z) [ C(z,x)]/dx = 9/ Iz{K(z) I[C(z,x)]/9z}. 3)

Assuming cylindrical symmetry for the case of two-dimensional
spread from a point source and letting C(z,r) (Table 1) represent
the aerial concentration of spores at height z at radial distance
r, equation 3 can be rewritten as

u(z) d[r C(z,r)]/dr = d/dz{K(z) d[r C(z,r)]/dz}. 4)

Equation 4 can be solved for the case in which u(z) and K(z)
obey the following relations (13,31,33):

u(z) = uylz| H)' ~°, K(2) = Kylz| HY’, 5)
and uH = (1 — buy Ky

TABLE 1. Symbols used in this study

in which uy is the wind speed and Kj is the coefficient of vertical
turbulent mixing, both evaluated at height z = H, b is a
dimensionless constant (~6/7) (31), and u. (Table 1) is the friction
velocity. Assuming a ground-level point release of spores from
within a plant canopy of height H, the simultaneous solution
of equations 4 and 5 (appendix) results in the following spatial
contact distribution, including the effects of deposition:

(r/ L' P28y (B Lgr)

cD() =
27 r Ly I(D)
rl LE 1 —~1
X exp {—(Lgf L::)f D [y“ oy %] dy l ©

in which
YAx) = [y 4V e dy

is the incomplete gamma function of order A evaluated at x ([1],
p. 260), I'(4) is the gamma function of 4 equal to (4 — 1)!
for integral A, B=(3 — 2b), D=(1 + B)/2B= (2 — b)/(3
—2b), Ly = uyH?|(B*Ky) is the downwind length scale for escape
from the plant canopy (appendix), and L is the downwind length
scale for deposit to the canopy (appendix). As is shown in the
appendix, equation 6 does not fulfill the condition expressed in
equation 1 and, therefore, according to Mollison (30), cannot
produce traveling wave epidemics. Although equation 6 is cumber-

Symbol Units Description

a m™' Mean rate of decreased deposition per unit length for the exponential contact distribution

b ND? Exponent (~6/7) in power law description of vertical turbulent diffusivity (K)

B ND B=(3—2b)

C spores m > Aerial spore concentration

cD m™ Contact distribution: probability of a lesion being produced per unit area of a leaf

CDyg m~? Form of contact distribution suggested by McCartney and Bainbridge (26) given as: CDyp=a
exp(—ar)/(2mr)

CDy m’ Form of contact distribution suggested by van den Bosch et al. (40) given as:
CDy = 8K [(28/w)"2r]/ (ww)

D ND D=(l+ B)/2B=(2— b)/(3—2b)

Fp sporesm s~ Deposition flux of spores per unit of ground area

Eyi Py sporesm 2§ Aerial spore flux in the x and z directions, respectively

H m Height of plant canopy. Use as a subscript indicates that subscripted function of height is to be
evaluated at z= H

i 8 Infectious period

IS m~’ Infectious severity: number of spore producing lesions per unit of leaf area

K m’s”! Vertical turbulent diffusivity

Ly m Mean length of downwind travel for deposition

Lg m Mean length of downwind travel for escape

LS m~? Latent severity: number of lesions that are not yet sporulating per unit of leaf area

M ND Multiplication factor: potential number of daughter lesions produced per mother lesion

NS m™ Noninfectious severity: number of lesions no longer producing infectious spores per unit of leaf area

p s Latent period

(0] spore s~ Total outward radial flux of airborne spores

r m Radial distance from focus of disease

R ND Nondimensional distance from focus of disease: R = r/Lg

S m™2 Total severity: number of lesions per unit of leaf area

SMAX m™? Maximum total severity: number of lesions per unit of leaf area

T s2 Normalized time rate of release of daughter lesion producing spores per unit of time since initiation
of mother lesion

u ms™' Wind speed

Us ms! Friction velocity

1% ms”' Isopathic velocity

Vg ms”' Deposition velocity defined as Fp/C

Vg ms™' Gravitational settling velocity of spore

z m Height above ground

o s~ Logarithmic isopathic velocity

& s Mean time for spore deposition in van den Bosch model (40)

v ND Measure of duration of spore release with respect to mean time between generations, 7: v = i/(27)

@ m s Horizontal diffusivity in van den Bosch model (40)

TND signifies that the defined quantity is dimensionless.
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some to manipulate analytically, the result was numerically eval-
uated for use in the epidemic simulations.

The nature of an epidemic resulting from the above contact
distribution (equation 6) is strongly dependent on the relative
rate of spore escape to spore deposition. This is characterized
by the nondimensional ratio Lg/Ly. Using b = 6/7 (31) in the
relation between uy and Ky given by equation 5, the definition
of Lg (equation 6) gives

Lg= uy H*| B* Ky = (Tug’(81u})H. ©)

Assuming that deposition to foliage involves gravitational sedi-
mentation and including the effect of deposition to the ground
(appendix), gives (12,18)

Lp = [uy/vy(LAI + 1)]H ®)

in which v, is the gravitational settling speed of spores (17) and
LAIis the leaf area index of the plant canopy. For some canopies,
equation 8 may have to be modified to include the contribution
to deposition due to inertial impaction (25). Combining equations
7 and 8 yields

LEJ; LD = 71{” Vg(LAI + l)l."SIutz. {9)

Epidemiology. In addition to the contact distribution describing
spore dispersal to new host tissue, an epidemiological model must
account for the finite length of time during which a lesion produces
spores. Let the function T(¢’) be the rate at which new lesions
produced by spores germinating at time ¢+ — ¢’ go on to release
the next generation of infectious spores at time ¢. 7(¢") includes
the delay time needed for a germinating spore to produce sporu-
lating lesions, as well as the time period during which lesions
remain infectious. The time rate of change of lesion density §
in terms of a two-dimensional analog of the logistic equation
(42) is (14,15,40)

d[s(;;y’t)] ='UCD(rr) ’f‘; T(;!) d[S(I’,;;,,‘ - f’)] d‘; dx.r dy!
all space

X[1—S8(x,p, )| SMAX] (10)

in which SMAX is the maximum lesion density, estimated to
be the total LAT of the crop divided by the mean area of a lesion;

1.0 =
\ — EXPONENTIAL
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Fig. 1. The fraction of the total number of spores released that are airborne
at distance r is plotted versus distance for various forms of contact
distributions: CD\y5 = exp(—r/ Lp)/(4mr Lp): solid line; CD, = 8K,[(28/
)]/ (rw); (@/8)"* = Lp: dot-dash line, and equation 6 with L,/ L,
= 4: dotted line; Lg/ Ly = 1: dot-dot-dash line; and Lg/ Ly = 0.25: dashed
line.

the unprimed spatial coordinates refer to the site of new infection;
the primes denote the donor lesion site; and r’ = [(x — x’)? +
(» — »’)*]"? is the distance between donor and target lesions.
The derivative of § within the time integral is the rate at which
source lesions were initiated at time ¢ — ¢’ (15). The integral
over space includes the contribution of all sources to the increase
in disease severity at point (x,y). Finally, the bracketed expression
accounts for multiple infection.

The functional form of the time integral in equation 10, which
represents the rate of inoculum production, depends on the nature
of the pathogen causing the disease. In all the simulations that
follow, I assume there is a latent period of duration p after infec-
tion, after which time each lesion releases M spores over an infec-
tious period of duration i (28). For this simple case, 7(¢’) is given
by the step function

T)=0;1'<p
=Mli;p<t<p+i (11)
=0;pti<t.

The effective time between generations, 7, is the first temporal
moment of the function 7, which for equation 11 gives r = p
+ i/2. Using equation 11, the solution to equation 10 can be
approximated with finite difference equations (appendix). This
results in a simulated epidemic in space and time. Epidemic
simulations were calculated with a single-line planting of suscepts.
The width and length of this strip were assumed to be 2 and
200 Lg, respectively. In these simulations, the time step, At, was
setequal to 7/ 10, and the line of suscepts was divided into elements
of length Ar set equal to Lg/2.

Isopathic velocity. A useful descriptor of the rate of spread
of an epidemic is the isopathic velocity, ¥(S), defined in terms
of the partial derivatives of lesion severity with respect to space
and time (28):

_dr d5/dt
FA — ) g rcn e constant r , |2
(S) df constant § anar constant [ ( )

It also is useful to define the logarithmic isopathic velocity, a, as

o= V(S)J,I'r: {d[ln{r)];‘rdf}iconslam 5 (13)

RESULTS

The contact distribution given by equation 6 was evaluated
numerically for values of the ratio Lg/ L, =4, 1, 0.25. The results
of these calculations are shown in Figure 1, in which the airborne
fraction of spores is plotted versus distance. For comparison,

10° —
-+ exponential
. Eq. 6 Lg/Lp
o — 1.0
o~ -3 T o
w 107 Sy, 0.5
- ‘N"‘:_ ~ == 01
~ - ! -~ F
e ¥
S
(] L p
(@]
10_‘1- e
‘o
S,
F \‘
05 1.0 10.0 100.0
I’/LE
Fig. 2. Log-log plots of the contact distribution given by equation 6
versus distance for values of Lg/ Ly: solid line, Lg/ L, = 1; dashed line,

Lg/ Lp = 0.5; dash-dot line, Lg/ L, = 0.1). For comparison, the modified
exponential distribution suggested by McCartney and Bainbridge (26)
is also shown: dotted line, CDy; = exp(—r/ Lg)/(4r Ly).
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Fig. 3. Normalized lesion severity (S) versus distance, r, in simulated
epidemics A, with CD given by equation 6 with Ly = 0.5 m, L, = 0.1
m, and CDyy = a exp(—ar)/(4wr) and B, a = 0.5 m~'. Epidemics were
seeded with §/SMAX = 0.1 at + = 0 and r = 0. Plots are shown for
the first six generations. Generations three and five (solid lines) are labeled,
and generations two, four, and six (dashed lines) are not.

vVT1/Lg

a 20 40 60 BO 100
Severity (%)

Fig. 4. Nondimensional isopathic velocity, ¥r/Lg (equation 12), versus
disease severity, S, for the simulations shown in Figure 3. A corresponds
to CD given by equation 6, and B was generated using a modified
exponential contact distribution (CDyy). Plots are shown for the first
six generations. Generations three and five (solid lines) are labeled, and
generations two, four, and six (dashed lines) are not.
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the modified exponential form suggested by McCartney and
Bainbridge (CD, with @ = L "; [26]) and the modified Bessel
function suggested by van den Bosch et al (CDy with §/w =
L, " [40]) also are shown. When deposition dominates diffusion
(i.e., Lg/ Lp> 1), the effect of spore escape from the plant canopy
is small, and the behavior of equation 6 approaches that of CD sy
and CDy (Fig. 1). However, if escape is more rapid than deposition
(i.e., Lg/ Lp<1), depletion of airborne spores is markedly reduced,
and an appreciable fraction of the spores can travel a great distance
from the focus.

Close to a focus, equation 6 can mimic the behavior of CD p.
At large distances (r > Lg), however, the extended tailing behavior
of equation 6 becomes important. This can be seen easily in a
log-log plot of equation 6 versus distance (Fig. 2). On this type
of graph, a power law produced a straight line whose slope was
equal to the exponent in the power law.

Simulated epidemics resulting from CD given by equation 6
(Lg/Lp = 1; Fig. 3A) differed markedly from epidemics based
on CDyy (@ = Lg '; Fig. 3B). Escape from the plant canopy
favored the development of disease at distance, and disease gra-
dients became shallower with each generation (Fig. 3A). Initially,
the epidemic based on CD, (Fig. 3B) developed similarly. Even-
tually, however, the finite length scale of the dispersal function
limited the downwind spread of disease. This limiting behavior
was illustrated by an examination of the isopathic velocities (equa-
tion 12) for the epidemics shown in Figure 3 as a function of
disease severity (Fig. 4). In the epidemic generated with equation
6 as the contact distribution, isopathic velocity continued to in-
crease and remained dependent on disease severity (Fig. 4A). The
leading edge of the disease wave always moved faster than the
trailing edge. The epidemic based on CD 5 uniformly approached
a limiting isopathic velocity (Fig. 4B).

The dispersive nature of the epidemic wave (Fig. 3) was high-
lighted by an examination of the spatial distribution of sporu-
lating lesion density, IS/, as a function of time. For the epidemic
based on equation 6, the spatial width of the infectious region
continued to spread with each generation (Fig. 5A). However,
for the epidemic based on CDp, the zone of sporulation quickly
reached a maximum width (Fig. 5B). This behavior was char-
acteristic of a traveling wave.

60

8

-
[=]

Sporulating area (%)

8B 8 &8 8 8

0 10 20 30 40 50 60
Distance (r/Lg)

Fig. 5. Normalized infectious severity, IS, versus dimensionless distance,

r/ .5, for the simulations shown in Figure 3. A, corresponds to equation

6. B, was generated using CD s (in text). Plots are shown for the first

six generations. Generations three and five (solid lines) are labeled, and
generations two, four, and six (dashed lines) are not.



In 96 simulated epidemics based on equation 6, isopathic
velocity was a linear function of distance from the the focus of
disease. The limiting slope of this linear relation was, by definition
(equation 13), the logarithmic isopathic velocity « (Fig. 6; M
= 7.5, Lg/Lp = 0.5, and v = i/(27) = 0.33). The value of «
increased with increasing multiplication factor M, increasing
escape from the canopy, as characterized by the ratio Lg/Lp,
and increasing infectious period, as characterized by the non-
dimensional ratio » = i/(27) (Fig. 7). The value of M varied
from 2 to 500, Lg/ L, varied from 0.05 to 2.0 and » ranged from
0.1 to 0.8 in the 96 simulations.

DISCUSSION

Logarithmic wave. None of the simulated epidemics based on
equation 6 as the contact distribution could be described as a
simple traveling wave. In every case, the calculated isopathic ve-
locities increased linearly with increasing distance from the focus
(Fig. 6) independent of the level of disease severity. Combining
equations 12 and 13, I obtained

—35/dt = ar(dS/9r) (14)
or
(0S/31)/ (ar) = —(3S/dr). (15)

For the special case @ = constant (Fig. 6), because the spatial
partial derivative of equation 14 must equal the temporal partial

120 T T

0 ' 'l 'l i
0 40 BO 120 160
r/ LE
Fig. 6. Dimensionless isopathic velocity, Vr/Lg (equation 12), versus
dimensionless distance from focus, r/ Lg, for an epidemic simulation based
on equation 6 (Lp = Lg/2, M = 7.5, v = 0.33). Plots are shown for
the first six generations. Generations one, three, and five (solid lines)
are labeled, and generations two, four, and six (dashed lines) are not.

20} Le/lp v

o—o D.05 0.75
FIEEET ) 0.05 0_33
1.6 a—a 0.1 Q.75
0.33

1 10 100

Fig. 7. The nondimensional logarithmic isopathic velocity, equation 13,
versus the logarithm of the epidemic multiplication factor, M, for values
of Lg/ Lp = 0.05 (circles), 0.1 (triangles), and 1.0 (squares) and for values
of v = i/(2r) = 0.75 (solid line-open symbols) and 0.33 (dotted line-
filled symbols).

derivative of equation 15, I obtained

—(9°S/ardt) = a{d[r(dS/dr)]/dr} = (9°S/3r)| ar = —3*S | dtdr.
(16)

Recalling that d[1n(r)]/dr = 1/r, the inner two terms in equation
16 can be rearranged to yield

889 = o*{d’S /[ In(r)]}. (17)

Equation 17 is a form of the wave equation that admits traveling
wave solutions in the log-transformed space (i.e., S(r,£) = f[1n(r)
— atf], for any arbitrary function ). Thus, a constant value for
the logarithmic isopathic velocity, a, leads to traveling waves
when disease severity is plotted against the logarithm of distance
from the focus of disease. Traveling epidemic waves in the log-
transformed space are consistent with the logit(S) — log(r) trans-
formation suggested by Berger and Luke (10) and Jeger’s (24)
type IV epidemic. The potentially unlimited length scale of this
type of epidemic is ultimately limited only by the size of the
experimental plot. This rapid spread of disease may have im-
portant consequences in yield prediction models (15,16).

The measurements of potato late blight severity as presented
by Minogue and Fry (29) show steep spatial disease gradients
early in the epidemic that become shallower as the epidemic
progresses. This is consistent with Waggoner’s (43) observation
that the length scale for the decrease in late blight severity about
a point source grew from 0.5 m (roughly the height of a plant)
for the primary disease gradients to 9 m (the size of the plots)
within 24 days. An epidemic model based on the escape of spores
from the plant canopy can describe this type of behavior when
the finite size of the experimental plot is included. (M = 100,
So=0.1, L;=0.5m, Lg/ Lp=0.1, v=0.3; Fig. 8). In examining
the spread of late leaf spot in peanut, Alderman et al (2) reported
an isopathic velocity of 0.09 m d™' during the initial stages of
the epidemic (11-22 August). During this period, disease was
basically confined to within 1.5 m of the focus. An examination
of Alderman et al’s disease-incidence data indicates that spatial
disease gradients also became less steep as the epidemic progressed
(22 August through 10 September). Direct application of equation
12 to this data ([2]; Fig. 1) resulted in estimated isopathic velocities
of 0.4, 0.8, and 2.9 m d™' at distances of 2, 4, and 6 m from
the focus of disease, respectively. After two generations of the
pathogen (7 = 20d; [2]), disease incidence became fairly homoge-
nous over the 20- X 20-m area within which disease was measured.
All of the above observations are consistent with the aforemen-

301
Distance (m)
Fig. 8. A, Logit disease severity versus distance r and B, the natural
logarithm of distance (In(r)) for late blight on Katahdin potatoes as
presented by Minogue and Fry ([29]; Fig. 2). Data from four dates are
shown: 3 August (circles), 6 August (triangles), 9 August (squares), and
17 August (diamonds). Initial severity curves are much steeper early in
the epidemic than later. Solid lines are the results for the first four
generations of the simulation model described in the text.

Vol. 83, No. 8, 1993 799



TABLE 2. Calculated ranges for the value of the ratio Lg/ Ly, (equation 6) for various crop, wind, and propagule parameters

Propagule Vg H Lp U Uy
Crop particle (cms™") LAI (em) (cm) (cms™) (cms™) Lg/Lp Reference
Beans
( Phaseolus vulgaris)y  Uromyces phaseoli* 0.82-1.01 1.0-1.2 27 355-570 25-40 50-90 0.004-0.03 17,19
U. phaseoli* 0.82-1.01 34-36 50 195-293 18-27 75-105 0.06-0.09 9
Winterwheat
(Triticum aestivum) Ragweed” 1.05 2-4 85-95 o~ 30-50 90-140  0.008-0.06 7
Puccinia recondita * 1 2.2-3 90-100 R 29-68 75-180  0.004-0.07 3
P. recondita® 1.0-1.2 0.2-2.5 10-30 250-340 i s 0.04-0.09 26

Spring barley

(Hordeum vulgaris) P. recondita" 1.0-1.2 3.1-58
P. recondita® 1.0-1.2 4.7
Corn
(Zea mays) Vi 1 29

30-90 265-520 B ity 0.08-0.16 26
54 65 A v 0.78* 26
233 v 45-79

140-315 0.01-0.03 44

* Dry spores.
® Liquid droplets.
® This experiment was conducted under very low wind speeds (5 cm s™' at

tioned dispersive epidemic waves. Plots of logit disease severity
versus In(r) yield reasonable straight-line graphs with slopes that
remain fairly constant over the course of the epidemic (Fig. 8B).
The flattening of gradients late in the season may be due to the
limitation in the size of the experimental plots. Similar epidemio-
logical behavior has been reported for the spread of Septoria
leaf spot in tomato (20).

The propagation velocity of the logarithmic epidemic wave
depends on the relative importance of the deposition and escape
of airborne spores, characterized by the ratio Lg/ L. The calcu-
lated range of Lg/L, for various crop and wind parameters
reported in the literature are shown in Table 2. The ratio of
wind speed at the top of the canopy to the friction velocity (uy/
u.) ranges from a value of 2.2 to 4 for agricultural crops (Table
2;[3,7,9,17,19,26,44]); as a result, Ly varies between 0.5 and 1.5
H (equation 7). This result is consistent with the fact that measured
vertical and downwind velocities have approximately the same
magnitude within plant canopies (21,35,44). Thus, the downwind
length scale for escape should be on the order of the canopy
height (34,38). The settling velocities of spores are much smaller
than typical wind speeds at the top of a plant canopy, and Lg/ L, tends
to be much less than unity (Table 2). However, during periods
of low wind speed, Lg/ L, may approach or even exceed unity
(Table 2; mean wind speed measured at midcanopy = 5 cm s~
[26]).

The role of intermittent wind may be very important in de-
termining the spatio-temporal development of an epidemic (5).
The effect of intermittent wind speed was investigated by running
simulated epidemics with a mixed contact distribution that was
a weighted sum of CDyga = 1/(4 Lg)] and of CD given by
equation 6 (with Lg/ Ly = 0.05). In these simulations, a certain
fraction, f, of the released spores was assumed to be dispersed
according to CD,p, and the remaining fraction, 1 — f, was
dispersed by equation 6. The dispersive nature of epidemics with
f= 10,09, 0.5, and 0.0 was investigated by examination of
plots of isopathic velocity versus time (Fig. 9). On such a plot,
isopathic velocity will approach an upper limiting value for a
simple traveling wave (Fig. 9; f = 1.0). The resultant epidemic
waves for mixed dispersal, however, are dispersive in nature, as
indicated by the continued increase in the value of ¥ as time
passes (Fig. 9; /= 0.9 and 0.5). This is true, even if only 10%
of the spores are released during turbulent conditions (Fig. 9;
f=0.9). An interesting result of these simulations is that epidemics
generated by mixed dispersal (f = 0.5 and f = 0.9) developed
more rapidly than did the epidemics resulting from either of the
parental contact distributions (f = 0.0 and f = 1.0). Dispersal
by equation 6 with a small value of the ratio Lg/ L, favors the
spatial spread of propagules, however, overall deposition is
reduced, which slows the temporal development of disease. On
the other hand, a dispersal function with a finite length scale,
such as CDyp, limits spatial spread, while favoring the local
increase in disease. The net result is that mixed dispersal favors
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Fig. 9. The effect of a mixed contact distribution on disease development
is illustrated in a plot of dimensionless isopathic velocity (¥ Lg, evaluated
at the 0.5% disease severity isopath) versus dimensionless time (¢/7). It
was assumed that a fraction, f, of the spores was dispersed according
to CDp, and the remaining fraction (1 — f) was dispersed by equation

very rapid disease spread and development. One generation’s
turbulently dispersed propagules “pioneer” new territory, and the
succeeding generations’ locally dispersed spores complete the
process of colonization.

In summary, turbulent dispersal of propagules results in travel-
ing epidemic waves in the log-transformed space. This type of
epidemic is characterized by ever decreasing spatial gradients and
continually increasing velocities of propagation. This model has
the advantage of describing spatial disease gradients early in an
epidemic and remains applicable until disease has spread over
the entire experimental plot.

APPENDIX

Contact distribution. Assuming that wind speed and turbulence
can be described by equation 5, the solution to equation 4 for
a continuous ground-level point source (z = 0, r = 0) releasing
spores at a rate Qp (Table 1) is

C(z,r) = Qy Z(z,r)| 2wr uy H) (A.1)

in which Z(z,r) = B/[T(D)R"] exp{—{[(z/ H)?/ R]} and B = (3
—2b), R=B* Ky rluy H, D= (1 + B)/2B= (2 — b)/(3
— 2b), and (D) is the gamma function evaluated at D that is
equal to (D — 1)! for integral D. Equation A.l evaluated on
the ground (z = 0) gives a concentration that falls off as radius



to the negative 1 + D =~ 17/9 ~ 1.89 power. This is very close
to the inverse square law obtained by assuming that spores simply
move away from a source in straight-line trajectories at a constant
velocity (9).

Deposition. To include the effect of deposition in the above
model (equation A.1), I assume that the aerial spore concentration,
including deposition, can be expressed as

Cp(z,r) = Qr) Z(z,r)|(27r uy H) (A.2)

in which Z(z,r) is dimensionless as given in equation A.l and
QO(r) (Table 1) is the rate at which airborne spores are blown
through an infinitely high cylinder of radius 7. This assumption
is equivalent to Chamberlain’s source depletion model (11).
Basically, turbulent mixing is assumed to be faster than deposition,
so the depletion of the spore cloud does not change the shape
of its concentration profile, Z(z,r). Assuming there is a uniform
canopy of height, H, and leaf area index, LA, the deposition
flux per unit of ground area, Fy(r) (Table 1), is given by

1 do _
2ar  dr

H
va Q) ("zzndz  (A3)
2nruy H* )0

Fp(r)=—

in which v, (Table 1) is the deposition velocity for airborne spores
within the plant canopy. If deposition is by gravitational sedi-
mentation, then v, = v, LAJ, in which v, (Table 1) is the gravi-
tational settling velocity of the spores (15). Deposition to the
ground may be accounted for by replacing LAJ with LAJ + |
in the above expression for v, The integral in equation A.3 is
evaluated by the definition of Z(z,r) in equation A.1, so

_]3_})fﬁ= exp [_ (z’{H}B] dz. (A4)
P(D)R® Jo R

f ! Z(z,r)dz =
0

Making the substitutions X = (z/ H)B/ Rand dz=[H R"® X''*~/
BJdX, I obtain

1= B8
" Zendz =R (R sin-1 gy (as)
0 (D) 0

The integral on the right side of equation A.5 is equal to B,
R™'), the incomplete gamma function of order B! evaluated
at R ([1], p. 260).

Using equation A.5, equation A.3 can be solved for Q(r) to
yield

Q(r)=Qoexp[— ‘::_f f
/]

y:J—_B] (B, y™") dy ] (A.6)
D

28 T(D)

in which y is a dummy integration variable, L, is the downwind
length scale for deposit defined by L, = uyH/v, Ly is the
downwind length scale for spore escape from the canopy and
is defined by Ly = r/ R= uyH’|(B*K}). By definition the contact
distribution, CD(r), is given by Fp(r)/ Oy, so combining equations
A.3 and A.6 yields equation 6 (described in text). In the limit
as B— |, equation 6 can be approximated by (15)

_ [/ Lo+ T F AL

2mr Ly \/1+ r?/ L2

in which L, and Lg are defined as above. In the limit, Ly —
° spores remain in the canopy, and equation A.7 approaches
the two-dimensional formulation suggested by McCartney and
Bainbridge ([26]; i.e., CD(r) = exp(—r/Lp)/(2wrLp)). For r >>
Lg, equation A.7 approaches r raised to the negative 2+ Ly
Lp) power. Thus, at large distances from the foci, spore deposition
falls off as a negative power of distance. The exponent in this
power law becomes increasingly negative with increasing canopy

CD(r) (A.7)

leaf area or height or spore settling speed and less negative with
increased turbulent mixing,

Mollison’s condition. The question at hand is whether the
contact distribution derived from equation 6 satisfies Mollison’s
condition (equation 1; [30]). I first note that the value of the
incomplete gamma function is always less than the value of the
corresponding gamma function, so

B,y Y <I(B™. (A.8)

I can obtain a lower bound by taking only the first term of a
positive definite power-series expansion for the incomplete gamma
function ([1], p. 262: equation 6.5.29):

VB, R) =R e " T(BY) 35 [R"T(B '+ 1 +n)]”
v(B', R")Y>BR BN (A.9)

Using the upper bound for the incomplete gamma function
(equation A.8) in the argument of the exponential function in
equation 6 and the lower bound (equation A.9) in the
premultiplier, T obtain a lower bound for the value of CD(r):

RU - B2 B/R'-lh‘? e VR
2arLpT (D)

fLE r {B I}
X exp [—(L;;f Ln)f [y” D)

0

cD(r) >

dy] ’ (A.10)

After multiplying equation A.10 by exp(kR), recalling R = r/ L,
and performing the integration, I obtain

BL
C 2 I ot L
b 2wl (D)
X exp [k r— (1+3B)In(R) _ _l_ — _2LgT (BWI)B 1+ sum:l )
2B R Ly (D)1 + B)

(A.11)

Comparing the first and last terms in the argument of the ex-
ponential in equation A.11, one can see that the linear term will
dominate and CD will increase indefinitely with increasing R
unless (1 + B)/(2B) > 1. Recalling that B= 3 — 25, this condition
can only be true if b > 1, which implies unrealistically that wind
speed decreases with height (equation 5). Thus, it is demonstrated
that the CD given by equation 6 is not of an exponential order
for realistic wind-velocity profiles.

The algorithm for the epidemic. To obtain an approximate
solution to equations 10 and 11, I conceptually divide the field
into subdivisions so the disease severity of the ;™ area, Aj, at
time n X Ar is §'. This severity is the sum of latent severity,
LS}", which accounts for lesions not yet sporulating; infectious
severity, /S;", which accounts for lesions actively sporulating; and
noninfectious severity, NS;", which accounts for lesions no longer
sporulating. The solution to equation 10 is approximated by
solving the following set of finite difference equations:

Spt! = SMAX — (SMAX — S}) exp(—N¥/ SMAX (A.12)
N = M(At/i) i.u CD(ry) Ay IS}, (A.13)
LS)= 84— §ir-ataiad (A.14)
IS7= S{=r/%0 — gln=+pyan (A.15)
NS! = S}n—mmm[ (A.16)
The distance between area j and area k is ry = [(x; — x)* +

(v — 7)1 S/ denotes the lesion density within area j at time
n X At, and N/ is the number of spores deposited per unit of
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ground area within area j between time n X At and time (n +
1) X At. Quantity CD(ry) is the probability density that a spore
released from within the source area, 4, is deposited within the
target area, A;, per unit of target area. CD(ry) was evaluated
from a numerical integration of equation 6. The number of new
lesions produced during each time step was calculated by
accounting for multiple infection with equation A.8. Given a set
of initial conditions for LS}, IS/, and NS}, equations A.12 and
A.13 can be solved iteratively at each time step to yield the total
lesion density, S, within each area, j. Equations A.14-A.16 are
used to apportion lesions according to sporulation characteristics
at each time step.

The isopathic velocity, ¥(S), given by equation 12, was esti-
mated in simulations with the following finite difference algorithm:
pr=—[St = ST v — S - 01X (Ar/A) (A1)
in which Ar is the distance between the centers of contiguous
areas in the direction of focus expansion and At is defined as
above.
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