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ABSTRACT

Smyth, G. K., Chakraborty, S., Clark, R. G., and Pettitt, A. N. 1992, A stochastic model for anthracnose development in Stylosanthes scabra.

Phytopathology 82:1267-1272.

Spatial and temporal progress of anthracnose caused by Colletotrichum
gloeosporioides in quantitatively resistant accessions of the tropical pas-
ture legume Stylosanthes scabra was studied in a field experiment at
the Southedge Research Station, Queensland, Australia. An anthracnose
epidemic was initiated by inoculating a group of susceptible seedlings
planted at the center of each plot. The speed with which the disease
spread from the infection focus to plants within a plot depended on their
proximity to the focus and level of resistance of the accessions. A stochastic
Markov chain model, in which the probability of a plant developing
a given disease severity level depends on its current disease state and
that of its neighbors, was used to describe disease progress. The probability

of a disease-free plant with disease-free neighbors developing anthracnose
within a 1-wk period was estimated to be 52% for the susceptible cultivar
Fitzroy, 2.89 for the resistant accession 93116, and 6.5-239% for accessions
with quantitative resistance. In all accessions, the probability of a plant
becoming diseased or progressing to a higher state of severity increased
with the severity level of its nearest neighbors. An accession effect param-
eter served as an estimate of the relative susceptibility of the accessions.
Accession ranking based on this parameter was highly correlated with
that based on the area under the disease progress curve. The model effec-
tively described both spatial and temporal aspects of anthracnose progress.

Additional keywords: logistic regression, nearest-neighbor analysis, ordinal regression, probability model.

Anthracnose, caused by Colletotrichum gloeosporioides (Penz.)
Penz. & Sacc. in Penz., is the most destructive disease affecting
species of the tropical pasture legume Stylosanthes. It was re-
sponsible for the devastation of 500,000 ha of S. humilis Kunth
(Townsville stylo) pastures in Australia during the mid-1970s,
Although this highly susceptible species has since been abandoned,
anthracnose continues to cause severe loss in other species of
commercial value. Extensive pathogenic specialization has been
identified within strains of C. gloeosporioides that cause anthrac-
nose of Stylosanthes spp., and in Australia, new strains of the
pathogen have arisen following the introduction of host cultivars
and accessions. (13,19).

As a management approach, accessions of S. hamata (L.) Taub.
and S. scabra Vogel are being evaluated for quantitative resistance
for effective protection against all or most of the known pathogenic
variants. Several accessions of S. scabra have shown little or no
race specificity in glasshouse screenings (9). These accessions have
maintained their resistance under different levels of inoculum and
at different day-night temperatures (8).

To test the effectiveness of quantitative resistance under field
conditions, selected accessions of S. scabra have been grown for
two successive summer seasons. Preliminary analysis of anthrac-
nose progress curves, using growth curves and piecewise linear
models, demonstrated that accessions consistently expressed the
same relative degree of resistance (10). The disease in this field
experiment was initiated from an infection focus at the center
of each plot, and this resulted in, for a splash-dispersed pathogen,
steep disease gradients in many accessions. While useful for initial
analysis, all the preliminary models considered were deterministic,
in the sense that average disease progress was assumed to follow
a curve of a specified shape. Although these models could have
been extended to incorporate spatial as well as temporal dis-
tribution of disease, as in Reynolds and Madden (24), even the
most elaborate deterministic models do not take into account
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the discreteness of the disease-rating class most plant pathologists
use for disease assessment, or satisfactorily model the lack of
homogeneity of variance and the nonstationarity of the response.
An alternative approach is available through stochastic models,
which explicitly recognize the above features and are, in general,
more realistic (18) in their representation of natural variability,
especially when dealing with small population sizes. In the related
and considerably more developed field of medical epidemiology,
emphasis has shifted from the early deterministic models to
stochastic models (4). Relatively few stochastic models of plant
disease have been published so far (7,27,28,31), although several
authors have advocated their use (15,26).

Stochastic models, in which the current disease severity of a
given plant is dependent only on its severity at the previous time
and on other factors such as the disease severity of its neighbors,
and not on disease severities in the more distant past or other
history, can be viewed as Markov chains (14). The purpose of
this paper is to investigate the usefulness of a discrete Markov
chain model in characterizing the quantitative resistance to
anthracnose in S. scabra.

MATERIALS AND METHODS

Host accessions and field plot establishment. Six accessions
of S. scabra, 55803, 55860, 92873, 92918, 93055, and 93099, were
selected from the Commonwealth Scientific and Industrial
Research Organisation (CSIRO) collection because they showed
low levels of anthracnose severity with three races of C. gloeo-
sporioides in a previous glasshouse screening (9). S. scabra
‘Fitzroy’ and accession 93116 were used as susceptible and resistant
controls, respectively. S. hamata ‘Verano’ was planted as an addi-
tional control. Seedlings, 6 wk old, raised in a 3:2:1 mixture of
loam, sand, and peat in 4- X 4-cm “rite gro” pots (Cheetham
Plastics Ltd., Brisbane, Australia) in a glasshouse, were trans-
planted into 4.5- X 4.5-m field plots on 16 December 1987 at
the Southedge Research Station (17°0" S, 145°20" E) of the
Queensland Department of Primary Industries. Each plot con-
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tained 100 plants at between- and within-row spacings of 50 cm.
There were three replicate plots for each accession/cultivar. Plots
were separated from each other on all sides by a 5-m fallow
to reduce interplot interference. Further details on experimental
design and other aspects of methodology have been reported
earlier (10).

Plot infestation and disease assessment. An anthracnose epi-
demic was initiated by inoculating three Fitzroy plants, raised
in the center of each plot, with three different isolates of C. gloeo-
sporioides representing all three S. scabra races as per methods
described earlier (10). Inoculated plants were then covered with
a reflective plastic bag for about 20 hours to provide the necessary
leaf wetness (11).

Starting 4 wk after inoculation, all 20 plants along the two
diagonals in each plot were assessed on eight occasions, and
intervals between observations were 7, 7, 7, 7, 14, 21, and 19
days, respectively. The double diagonal configuration meant that
the assessed plants were at approximate radial distances of 0.35,
1.06, 1.77, 2.47, and 3.18 m from the infection focus, and that
four plants were available per plot for each distance. The
percentage of leaf area diseased was estimated from the top 10-
to 15-cm length of a randomly selected branch for each plant,
using a 10-point rating scale (8) (0 = no visible symptoms, 1
= 1-3%, 2 = 4-6%, 3 = 7-12%, 4 = 13-25%, 5 = 26-50%, 6
= 51-75%, 7 = 76-87%, 8 = 88-94, and 9 = 95-100%). A total
of 540 plants (20 plants in each of three plots for each of nine
cultivars) were assessed, and each of those returned a series of
eight assessments.

Model description. Two features of the data that need to be
captured in a statistical model are the ordered categorical scale
on which the disease assessments are recorded and the substantial
interdependence of assessments over both time and space. To
model responses on the ordered scale, the ordinal logistic regres-
sion model (22,32) was used. Let 7;, j = 1, ..., k be the
probabilities of a plant being in each of the k disease assessment
categories (kK = 10 for the 10-point scale). The ordinal logistic
model, also called the cumulative odds or proportional odds
model, assumes that

logit(y)) = In[y;/(1 —¥)]=6;+B'x j=1,....k—1

where y;=m; 4+ ... +m, X is a vector of explanatory variables,
and 0; and g are unknown parameters. The parameters 6, represent
the baseline logits, and B represents the regression parameters
through which the effect of the explanatory variables is mediated.
The ; are the cumulative probabilities of exceeding a given disease
level. In particular, v, is the probability of being diseased, and
on the 10-point scale v, is the probability of 95-100% disease.
The use of cumulative probabilities ensures that B is consistently
defined, even if the ordered categories are regrouped—an im-
portant property, since the divisions between the assessment scale
classes are essentially arbitrary. Ordinal logistic regression is a
direct generalization of binary logistic regression. It can be viewed
as a grouped-continuous model, the ordinal response being formed
by taking contiguous intervals of an unobserved underlying con-
tinuous response variable, with the 6; as cut points. Armstrong
and Sloan (2) provide an introduction to this model and a com-
parison with others.

The interdependence of assessments is modeled by including
the disease assessments of the plant and its neighbors at the pre-
vious observation time among the explanatory variables. Con-
ditional upon this information about the prior state is the assump-
tion that the disease develops independently on each of the plants
between one observation and the next. The resulting model is
a conditional generalized linear model, as defined elsewhere
(20,33). Since the probabilities depend only on observations at
the previous time and not on events in the more distant past,
the model may be also characterized as a first order Markov
chain (14), and use is made of this characterization in the analysis.

Analysis. Let yj;, be an integer between | and k representing
the disease assessment of the jth plant of the ith cultivar at the
tth observation time, and let ;. be the cumulative probability
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of exceeding level ¢. Let b = y;,, be the disease level of the
plant at the previous time. The regression model used in this
study had the form

]03“(’)’;}1.1-) =0+ pp+ o+ B fi + 51f21 + Bify + 34f22 + Bsd

where f} is a measure of the average disease level of the plant’s
nearest neighbors at the previous time, f; is a similar measure
for the more distant neighbors, and d is the number of days
between observation times ¢-1 and ¢. In this model, the u, represent
effects for the previous disease level and, like the 6, are not
of primary interest. Of central interest are the o;, which represent
the relative susceptibility of each cultivar/accession. The remain-
ing covariates are continuous. The influence of neighboring plants
is approximated by two quadratics, and d is included to allow
for the fact that larger changes can be expected over longer periods.

The average disease level of the neighboring plants is calculated
on a logit scale, using the midpoints of percent diseased for the
assessment categories. For example, suppose that the two nearest
neighbors (0.71 m distant) were in assessment categories 3 and
4 at time r-1. The midpoint of percent diseased is 9.5% for assess-
ment class 3 and 19% for class 4, so f;=[logit(0.095) + logit(0.19)]/
2. Similarly, f; is calculated from the more distant (1.42 m distant)
neighbors. The logit transforms used offset 0.01, as logit(p) =
In[(p + 0.01)/(p + 0.01)], to avoid taking the logarithm of 0;
Cox and Snell (12) provide a justification of this type of offset.
The use of logits here, rather than raw percentages or category
labels, improved the model fit and had the intuitive appeal of
putting the covariate disease levels on the same scale as the con-
tinuous response variable underlying the grouped-continuous in-
terpretation of the ordinal regression model.

To ensure that a sufficient number of observations were
available in all assessment scale categories, the 10-point scale was
collapsed into four broad classes when categorizing the response
Yiu (i.e., k =4). The categories were disease-free, moderate (ratings
1-3), severe (ratings 4-6), and very severe (ratings 7-9). The co-
variates f; and f;, however, were calculated from the 10-point
scale.

Some plants died during the experiment of causes other than
anthracnose and therefore had no further observations recorded.
If neighboring plants were missing, the closest available neighbors
were used. All plants were supposed to be disease-free at time
0. Plants at the outer edge of each plot with no physical outer
neighbors were assumed to have disease-free outer neighbors for
the purpose of the analysis. The inoculated plants at the center
of the plot were not assessed; they were assumed to have a constant
effective disease level throughout the experiment, and this level
was estimated from the data.

Most published discussion of ordinal regression (1,22), an ex-
ception being Ashby, Pocock, and Shaper (3), has been in the
context of data sets that are small or can be summarized in
contingency tables with a small number of levels. The data con-
sidered here contains several continuous covariates and 4,061
observations, and it is essential that the calculations be pro-
grammed in regression rather than contingency table form. The
SAS program PROC CATMOD (29), PLUM (21), and GLIM
(23), for example, are unsuitable for this application. Maximum
likelihood estimation of the ordinal logistic model is available
in the SAS supplemental library program PROC LOGIST (16),
or in the S (5) program LOGIST available from the Statlib data-
base (17). For this study a Matlab (Mathworks) program was
developed on a Sun 3/60 workstation. The program is available
from the Netlib database (30).

RESULTS

Graphical data summary. The central Fitzroy plants in all plots
developed symptoms within a week of inoculation with the three
races. Because of very dry weather conditions, there was no further
spread or development of anthracnose until 4 wk after inoculation,
when plants adjacent to the central Fitzroy showed symptoms.
Disease assessment was started at that time. In one Fitzroy plot,



a few plants became infected with inoculum coming from a nearby
field before the central plants were inoculated. Anthracnose in
all other plots developed from the central infection focus. The
speed with which plants became infected depended on their prox-
imity to the infection focus and, more importantly, on the re-
sistance level of the accessions. Disease severity on Fitzroy plants
increased rapidly from an early part of the season, irrespective
of their radial distance from the source (Fig. 1). Anthracnose
was detected on plants at all distances from the focus within
5 wk of inoculation. In other accessions, spread of anthracnose
to the outside plants was delayed by several weeks, and in 93116
and 93099 the disease was never detected on the perimeter plants
in some plots.

In the susceptible Fitzroy and 55803, considerable disease de-
veloped on plants located more than 3 m from the focus. In
92873,92918, and Verano, some disease developed at this distance,
whereas in the resistant 93116 very little disease was detected,
even on plants adjacent to the focus. In accessions 55860, 93055,
and 93099, increases in anthracnose severity were mainly restricted
to plants close to the focus. By using the area under the disease
progress curve (AUDPC) averaged over all positions, the acces-
sions can be sorted in an increasing order of resistance as Fitzroy,
55803, 92873, Verano, 92918, 55860, 93055, 93099, and 93116.

Ordinal regression analysis. Parameter estimates and standard
errors for the ordinal logistic regression model are given in Table
1. Positive parameters can be interpreted as increasing the prob-
ability of exceeding any given disease levels. The parameter u,,
which measures the effect of the prior disease level, increases
monotonically, with b reflecting the intuitive property of higher
prior disease levels being associated with higher current disease
levels.

The accession effect parameter «;, which is given relative to
Fitzroy, orders the cultivars and accessions in increasing order
of disease resistance as Fitzroy, 55803, 92873, 92918, Verano,
93099, 55860, 93055, and 93116. The Spearman’s rank correlation
coefficient (r, = 0.93) is highly significant (P < 0.001) for this
and the overall AUDPC-based ranking of accessions, reinforcing
the usefulness of this parameter as a measure of relative suscepti-
bility of the accessions. Compared with AUDPC, the accession
parameter has the advantages of taking into account more features
of the disease epidemic and in having standard errors attached.

The effect of neighboring plants on disease level is difficult
to read directly from the parameter estimates but can be depicted
graphically, as in Figure 2. The influence of the neighbors is
substantial but reaches a limit as their disease level increases.
The influence of the more distant neighbors is between one fourth
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Fig. 1. Anthracnose development on Stylosanthes scabra ‘Fitzroy’ and accessions 55860, 93116, 93099, 92873, 93055, 92918, 55803, and S. hamata
‘Verano.” A group of Fitzroy plants, raised in the center of each plot and inoculated in the field, served as the focus for initiating an epidemic.
Anthracnose severity was monitored on plants maintained at distances of 0.35 (@), 1.06 (O), 1.77 (A), 2.47 (A), and 3.18 m (V) from the infection
focus. Pooled standard error of the mean over all eight times: Fitzroy (0.28), 55860 (0.19), 93116 (0.08), 92873 (0.29), 93099 (0.12), 93055 (0.19),

92918 (0.22), 55803 (0.42), and Verano (0.27).
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and one third of that of the nearest neighbors. This is consistent
with the hypothesis that influence is proportional to squared dis-
tance, since the more distant neighbors are exactly twice the
distance from the plant influenced as are the nearest neighbors.

The number of days d since last observation was also positively
associated with disease development. Although not given in Table
1, the effective assessment scale category of the inoculated plants
in the middle of each plot was estimated to be 5 on the 10-
point scale.

Fitted probabilities. The model gives probabilities of being in
each disease category for any plant as

m=[1=v; Jj=1
Vi TV J=2,...,k

where <, are the cumulative probabilities. Estimated probabilities
for a set of four selected accessions of S. scabra and the susceptible
and resistant controls at four different severity levels of the neigh-
bors are given in Table 2. For simplicity in presentation, the
period since last observation is assumed to be 1 wk, and all four
neighboring plants are assumed to have been equally diseased.
The probability of a plant developing anthracnose, given that
it and its neighbors were disease-free at the previous time, was
52% for the susceptible Fitzroy, 2.8% for the resistant accession
93116, and from 6.5 to 239% for accessions 55860, 93055, and
93099 with quantitative resistance. This means that plants were
being infected by inoculum coming from sources beyond nearest
neighbors, although sampling along the two diagonals meant that
only two of the four nearest neighbors were assessed. In all acces-
sions, the probability of a plant remaining disease-free decreased
with increasing severity levels of its neighbors. However, the prob-
ability of further increase in the disease level was reduced for
plants with an already high level of disease. This is mainly because
at high severities, both the number of disease-free leaves remaining
to be infected and, with leaf loss, the amount of secondary inocu-
lum available for fresh infections are reduced.

Although probabilities as given in Table 2 give a complete
description of the distribution of disease, a less detailed and more
compact summary of disease prevalence is also desirable. In prob-
ability theory, time-homogeneous Markov chains have the prop-
erty of the distribution of states approaching a stationary distribu-
tion with time, irrespective of the inital values. The standard
method of summarizing a Markov chain is to calculate this sta-
tionary distribution. Let m; be the probability that a plant will
be in disease category j, given that it was in category i at the
previous time. In general, this probability depends on the neigh-

TABLE 1. Parameter estimates and standard errors (SE) for the ordinal
regression model

Covariate Parameter Estimate SE
Prior disease (rating)
Disease-free (0) Ho 0 0
Moderate (1-3) iy 1.20 0.106
Severe (4-6) 1oy 1.80 0.180
Very severe (7-9) 3 2.61 0.240
Accession or cultivar
Fitzroy g 0 0
55860 o —-2.73 0.199
93116 a, —3.63 0.220
92873 oy —1.68 0.171
93099 a4 —2.67 0.199
93055 as —3.09 0.208
92918 o —2.18 0.192
55803 o —1.27 0.162
Verano ag —2.38 0.188
Neighbor
Nearest neighbor, f, B 0.412 0.063
i B —0.106 0.014
Distant neighbor, /2 Bs 0.167 0.082
fi Ba —0.031 0.017
Days Bs 0.113 0.007
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boring plants as well as on the susceptibility of the cultivar/
accession and on the time since last observation. To simplify
matters, each plant was assumed to have neighbors in the same
disease state as itself at the previous time, and observations were
assumed to be weekly. For each accession/cultivar, the 4 X 4
matrix of transition probabilities m; was calculated and the sta-
tionary distribution was obtained as the eigenvector with unit
eigenvalue (14). While the assumption regarding neighbors is not
realistic, it is sufficient to approximate the exact stationary dis-
tributions, which otherwise would be found by simulation. The
stationary distributions (Table 3) give a concrete interpretation
to the differences between cultivars and accessions measured by
the accession parameter in the ordinal regression model.

Adequacy of the model. The likelihood ratio test statistic for
overall significance of the regression is 4,702 on 16 degrees of
freedom, which, as an approximately x> random variable, is
enormously significant. The statistic for the parameters relating
to neighbors only is 935.2 on 4 degrees of freedom. For the quad-
ratic terms, the least significant terms in the model, the statistic
is 41.9 on 2 degrees of freedom. The coefficient 8, of f3 is not
individually significant and is kept in the model for symmetry
with f7. The four parameters for neighbor effects could, however,
have been reduced to two by constraining the influence of the
more distant neighbors to a fixed proportion, say, one fourth
of that of the nearest neighbors.

The stationarity of the stochastic model over time was tested
by including effects for the eight assessment times in the model.
This showed that the model slightly underestimates the amount
of disease at later times and overestimates it at early times. While
the time effect was statistically significant, it was less so than
any of the terms included in the final model, and it made little
difference to the overall fit of the model or to the estimated
accession effects. The Markov chain assumption was tested by
including in the model information about disease levels at time
t-2. As with assessment time, this effect, although statistically
significant, made little difference to the overall fit or to the
estimated parameters.

DISCUSSION

A first-order Markov chain has been previously used for the
simulation of daily weather in plant disease management (6). This
paper shows the use of a Markov chain to model a plant disease
epidemic for the first time. The relevance of the model to our
study lies in the fact that disease progress curves of S. scabra
accessions with different levels of quantitative resistance were of
different shapes (Fig. 1). Deterministic models, such as the logistic
model for growth curve analysis, are inadequate for the analysis

5 - . . ,

Disease pressure (logit)

-5 -4 -3 -2 -1 0 1 2 3 4
Disease state of neighbors (logit)

Fig. 2. Overall influence of severity levels of first- (—) and second-

(----) order neighbors on the susceptibility of Stylosanthes scabra

accessions. The vertical axis is on the same scale as that used for the
accession effect parameter of the ordinal regression model.



of disease progress curves of widely different shapes. Although
additional parameters may be included to accommodate this, often
such parameters can not be easily interpreted as having a biologi-
cal meaning, and if more than one model is used, parameters
are not directly comparable between models. The Markov chain
model makes no prior assumptions about the shape of the disease
progress curves and is therefore applicable to data where a range
of host cultivars and lines with varying levels of resistance have
been included. This makes the model potentially useful to plant
breeders and plant pathologists evaluating a range of host geno-
types.

The model has several useful attributes. It provides an alter-
native to the existing methods (24) to simultaneously model tem-
poral and spatial progress of disease. It gives interpretable results
and is satisfying from a statistical point of view, since it explicitly
handles the discreteness of the responses and the observation
times. The estimated effect of first- and second-order neighbors
is in agreement with the observation that infection gradients of
splash-dispersed pathogens is typically steep and is consistent with

the theory that the influence of neighbors for such pathogens
should be inversely proportional to their squared distance (24).
The estimated regression coefficients for the accessions can be
used as a measure of relative susceptibility of the accessions. Use-
fulness of this accession effect parameter is apparent from the
significant rank correlation with AUDPC-based ranking of acces-
sions. The value of this parameter as a predictor of anthrac-
nose development on the accessions needs to be established from
long-term field studies.

For accessions other than Fitzroy, plants adjacent to the central
focus are subjected to alloinfection (infection on a genotype result-
ing from propagules produced on a different genotype), whereas
plants further removed from the focus are mainly subjected to
autoinfection (infection on a genotype resulting from propagules
produced on that same genotype) (25). The only defense against
autoinfection is horizontal resistance (effective equally against
all variants of a pathogen) (25). The position-wise plots of disease
progress in accessions 55860, 93055 and 93099 clearly demonstrate
the effectiveness of anthracnose resistance in these accessions.

TABLE 2. Estimated probabilities for a plant from accessions or cultivars (Acc/cv.) of Stylosanthes scabra to be in disease severity category c,
given that it was in category b 7 days earlier and that its nearest and more distant neighbors were in category n

c

Acc/ev. b* n 0 1-3 4-6 7-9 Accfev. b n 0 1-3 4-6 7-9
Fitzroy 0 0 0.481 0.512 0.007 0.000 93099 0 0 0.931 0.069 0.001 0.000
2 0.047 0.824 0.122 0.008 2 0.415 0.575 0.010 0.001
5 0.005 0.386 0.535 0.074 5 0.063 0.839 0.092 0.006
8 0.002 0.202 0.629 0.167 8 0.026 0.761 0.199 0.014
1-3 0 0.219 0.756 0.024 0.001 1-3 0 0.802 0.196 0.002 0.000
2 0.015 0.656 0.305 0.025 2 0.176 0.791 0.031 0.002
5 0.001 0.160 0.628 0.210 5 0.020 0.716 0.246 0.018
8 0.001 0.071 0.528 0.400 8 0.008 0.520 0.428 0.044
4-6 0 0.133 0.822 0.043 0.002 4-6 0 0.689 0.308 0.003 0.000
2 0,008 0.519 0.429 0.044 2 0.105 0.837 0.055 0.003
S 0.001 0.095 0.577 0.327 5 0.011 0.594 0.363 0.033
8 0.000 0.040 0.411 0.549 8 0.004 0.375 0.543 0.078
7-9 0 0.064 0.840 0.091 0.006 7-9 0 0.497 0.496 0.007 0.000
2 0.004 0.328 0.574 0.094 2 0.050 0.828 0.115 0.007
S 0.000 0.045 0.433 0.522 5 0.005 0.400 0.524 0.070
8 0.000 0.018 0.250 0.732 8 0.002 0.212 0.627 0.159
55860 0 0 0.935 0.065 0.001 0.000 93055 0 0 0.953 0.046 0.000 0.000
2 0.430 0.560 0.009 0.001 2 0.519 0.474 0.006 0.000
5 0.067 0.841 0.087 0.005 5 0.093 0.841 0.063 0.004
8 0.028 0.770 0.189 0.013 8 0.039 0.810 0.142 0.009
1-3 0 0.812 0.186 0.002 0.000 1-3 0 0.860 0.138 0.001 0.000
2 0.186 0.783 0.029 0.002 2 0.246 0.733 0.021 0.001
5 0.021 0.727 0.234 0.017 5 0.030 0.780 0.178 0.012
8 0.009 0.535 0.415 0.042 8 0.012 0.618 0.341 0.029
4-6 0 0.703 0.294 0.003 0.000 4-6 0 0.771 0.226 0.002 0.000
2 0.111 0.834 0.052 0.003 2 0.151 0.810 0.037 0.002
3 0.012 0.608 0.349 0.031 5 0.017 0.683 0.279 0.022
8 0.005 0.390 0.532 0.073 8 0.007 0.475 0.465 0.052
7-9 0 0.513 0.480 0.006 0.000 7-9 0 0.600 0.395 0.005 0.000
2 0.053 0.832 0.109 0.007 2 0.074 0.842 0.079 0.005
5 0.005 0.416 0.513 0.066 5 0.008 0.502 0.443 0.047
8 0.002 0.223 0.624 0.150 8 0.003 0.290 0.596 0.110
93116 0 0 0.972 0.028 0.000 0.000 55803 0 0 0.767 0.230 0.002 0.000
2 0.650 0.347 0.004 0.000 2 0.148 0.812 0.038 0.002
5 0.150 0.811 0.038 0.002 5 0.016 0.678 0.283 0.022
8 0.066 0.840 0.088 0.005 8 0.007 0.470 0.470 0.054
1-3 0 0914 0.086 0.001 0.000 1-3 0 0.499 0.494 0.007 0.000
2 0.359 0.628 0.012 0.001 2 0.050 0.828 0.114 0.007
5 0.050 0.829 0.113 0.007 5 0.005 0.402 0.523 0.070
8 0.021 0.724 0.238 0.017 8 0.002 0.214 0.627 0.158
4-6 0 0.853 0.146 0.001 0.000 4-6 0 0.353 0.634 0.012 0.001
2 0.235 0.742 0.022 0.001 2 0.028 0.770 0.189 0.013
5 0.028 0.772 0.188 0.013 5 0.003 0.271 0.606 0.120
8 0.012 0.604 0.353 0.031 8 0.001 0.130 0.614 0.255
7-9 0 0.721 0.276 0.003 0.000 7-9 0 0.196 0.775 0.028 0.002
2 0.120 0.829 0.048 0.003 2 0.013 0.626 0.333 0.028
5 0.013 0.628 0.331 0.028 d 0.001 0.142 0.621 0.235
8 0.005 0.411 0.516 0.067 8 0.000 0.062 0.503 0.434

® Disease ratings: 0 (disease-free); 1-3 (moderate); 4-6 (severe); 7-9 (very severe).
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TABLE 3. Theoretical limiting distributions of anthracnose levels calcu-
lated from simplified Markov chain transition probabilities

Disease severity states

Accession

or cultivar Disease-free Moderate Severe Very severe
Fitzroy 0.005 0.137 0.381 0.477
55860 0.730 0.256 0.013 0.001
93116 0.927 0.072 0.001 0.000
92873 0.262 0.586 0.131 0.021
93099 0.706 0.277 0.015 0.001
93055 0.836 0.159 0.005 0.000
92918 0.489 0.457 0.049 0.005
55803 0.126 0.573 0.242 0.059
Verano 0.586 0.381 0.031 0.003

Whether this resistance is truly horizontal is yet to be determined.

The stochastic model used in our study has obvious limitations.
For example, it does not consider the influence of weather on
disease development. The overestimation of initial disease levels
during the first 4 wk after inoculation, when extremely dry weather
conditions arrested disease spread in the field, may be rectified
by including weather as a covariate. This may also improve the
predictive values of the long-run probabilities given in Table 3.
Allowing the severity of Fitzroy plants used as the central inocu-
lum source to increase with time is another possible refinement.
The additional complexity, however, is not necessarily warranted
for our purpose of judging the suitability of a Markov chain
model to analyze the level of resistance in the accessions.

Often observations made on biological systems, such as the
development of a plant disease, are characterized by unexplained
variability, As opposed to a deterministic model, which implies
that factors significantly influencing an event are known and
accounted for, a stochastic model allows the inclusion of unex-
plained variability in the model (28). Our results have demon-
strated the ability of a stochastic model to describe both spatial
and temporal aspects of the anthracnose epidemic. Markov chains
may also be useful in analyzing aspects such as the influence
of weather on disease development and the role of nearest neigh-
bors in a genotype mixture. This and other stochastic models
(27,28) offer an alternative approach in the analysis of plant disease
epidemics, and they deserve more attention from plant patho-
logists.
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