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ABSTRACT

Berger, R, D..and Jones, J. W. 1985, A general model for disease progress with functions for variable latency and lesion expansion on growing host plants.

Phytopathology 75:792-797.

A disease-progress model was derived by combining an infection model
with a host-growth model. Variants of common growth functions (e.g., the
logistic, Gompertz, and exponential) were used as the basic equations to
calculate infections and host growth in time. The model contained a
feedback mechanism to limit host growth as increased disease. Variable
latency was achieved by a distributed-delay submodel. The duration and
shape of the latency curve could be altered by changing the number of stages
in the submodel and by varying the development rates between stages. Asin
natural pathosystems, the simulated epidemic rates were faster at lower
initial amounts of disease, The epidemic rate after an epidemic interruption
was about twofold faster than the average rate. The increases in epidemic

rate could be explained solely by the amount and proportion of healthy
tissue rather than by a change in any variable related to the pathogen. The
rate and shape of the plant-growth curve affected the rate and shape of the
disease-progress curve. Under some conditions, the areas of healthy and
diseased tissue could be increasing at exponential rates but the epidemic
rate was about zero; i.e., the proportion of disease did not change. If the
rates of infection and host growth for a pathosystem are set as functions of
environmental parameters, then the general model might be used for real-
time simulation. The model may have benefit for decision-making in disease
management and to estimate potential crop loss.

Various growth equations (such as the logistic, Gompertz,
Richards, and Weibull) have been used to characterize the progress
of disease in time (1,5,14,21). Curves for one or more of the
functions usually approximate the actual progress curve. However,
these simple growth equations lack substantial biological realism as
models for disease progress in that several important
epidemiological factors are neglected or not characterized (e.g.,
host growth, length of latent period, variable latency of infections,
and lesion expansion).

The host growth that occurs during the epidemic may influence
the rate of disease increase and the shape of the disease-progress
curve (3,13). When the simple growth equations (as above) are used
to describe disease progress, the influence of host growth on disease
is not specifically considered. The resultant curve is a summary of
disease progress as modified by the ongoing host growth. Host
growth during the epidemic also causes problems in the estimation
of disease (4) and the calculation of epidemic rates unless the
disease proportions are appropriately transformed (21).

Okuno (as cited by Kato [12]) combined a logistic equation for
disease increase with a logistic equation for host growth. With
Okuno’s model, Kato (12) found that, even though the rate of
disease develoment was held constant, the epidemic rate increased
as the rate of development of leaf area increased. Also, negative
rates of epidemic development occurred when the increase of the
diseased area was slower than the growth rate of the host. However,
Kato (12) did not consider the influence of disease on host growth
and compensation for latent period and lesion expansion was not
incorporated into the model. Rouse (17) also suggested that host
growth be incorporated into the logistic disease model. However,
he also did not consider the latent period in his model and the
intricacies of his general host growth variable (K) were not
explored.

The effects of variable latent periods on natural disease progress
are complex. Variable latency will slow the rate and smooth the
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curves of disease progress and extend infections in time (20). When
a population of infections occurs on a given day, 1,,, the lesions that
develop therefrom do not all appear on the same day one latent
period (p) later at 1, + p. The appearance of lesions from
synchronous infections are distributed as unique populations
beginning at time ¢, + p. The lesions or diseased individuals may
continue to appear over several days (6), weeks (8), or months (7),
depending on the pathosystem. If the population of appearing
lesions is plotted, the curve may be linear (6), monomolecular (6),
sigmoidal (6,18), or of another shape. To analyze the variable
appearance of rust pustules on wheat after a single inoculation,
Shaner (18) used the probit transformation to linearize the latency
curve and to calculate a median latent period (L Pso).

Lesion expansion over time is also a significant component of
disease progress. For many diseases, such as Alternaria and
Cercospora leafspots and Phytophthora and Botrytis blights, the
lesions continue to expand and affect neighboring tissue. For
northern leaf blight caused in corn by Helminthosporium
turcicum, the lesion expansion can be considerable (2).

Because of the problems and limitations noted above for current
epidemiological models, a new model was developed to describe the
progress of disease as influenced by host growth with special
functions for variable latency and lesion expansion.

THE MODEL

Host growth. The logistic and Richards equations have been
used frequently to describe host growth (10). Since the logistic
equation is a common model with some flexibility, we used this
equation to obtain the increase of leaf area over time. The daily
increase of leaf area (d1./d¢) in simulations without disease was
calculated as:

dL/dr =k, L(1 = L] L) (N

in which k, is the rate of leaf-area increase, L is the present total leaf
area, and Lu. is the maximum leaf area. The total leaf area was
accumulated over time beginning at initial leaf area (Lo) by using
rectangular integration. For many of our simulations, the values
were Lo = 1 em”, Lu = 4,600 cm®, and &, = 0.27. These values



were estimated from the logistic increase in the leaf area of a sweet
corn plant in which Lu.. was reached in 65 days (2). Additional
host-growth curves were obtained by adjusting Lo, k;, and L of
the logistic and other functions.

The assumption was made that the increasing disease would slow
subsequent host growth because this is typical of natural
pathosystems (13). A feedback function for the influence of disease
severity (1) on host growth was then necessary. The daily increase
of leaf area per plant in the presence of disease was:

di/dt = ki L(1—y) (1 = L/ L) (2)

in which (1 — y) represents the fraction of disease-free leaf area to
provide the necessary feedback on host growth. The total leaf area
(L) in the presence of disease was accumulated as above.

Disease increase. The logistic equation has also been used
frequently to characterize disease progress (1,5,14,21). The logistic
equation for the rate of disease increase is:

dy/di=ry(1—y) (3)

in which dy/dris the daily increase in disease proportion y, and r is
the apparent infection rate (21). In the simple logistic rate equation
(equation 3), the latent period is not specifically considered so an
alternative form was desired. In equation 3, disease begets disease
rather than the biologically more correct: disease begets infection
that leads to disease after time p. Consequently, the daily increase
of infected leaf area (d//dr) was derived in the new model as:

dijdi=ky Y (1 = I/L) (4)

in which kyis a true infection rate based on area of diseased tissue,
rather than an apparent rate derived from the proportion of visible
disease, and Y is the present total diseased leaf area (not disease
proportion). The modified logistic-infection equation (equation 4)
can be interpreted as: the present diseased area (¥) leads to daily
infection (d//dr) by infection rate (ky) and is limited by the
proportion of healthy tissue remaining to be infected (1 — I/ L).
The daily increase in infected leaf area was integrated over time,
beginning with initial infected (not diseased) leaf area (/o).

The daily diseased leaf area (d ¥/dr) that appeared one latent
period later was calculated as a pure delay function:

dY/dt = dI(t — p)/dt (5)

in which p is the latent period. The daily diseased area was
integrated over time beginning from the initial diseased area ( Ys).
In simulations, fo > Y, and both parameters were varied to study
the influence of initial infected and diseased areas on disease
progress.

The proportion disease () was calculated from the total diseased
area (Y) and the total leaf area (L) for any time (1) as:

y=Y/L (6)

To compare simulated epidemics with the various models and
parameters, the progress curves were either plotted versus time in
linear-linear scale or else the disease proportions were first
transformed into logits (log,(y/(1 — »))). Anaverage epidemic rate
(r) was calculated as: r = (logit (y2) — logit (31))/ (2 — £1)(5,21),in
which ) and 12 were selected for points of interest along the curve.

Variable latency. In equation 5, all synchronous infections
(d//dr) at time 1, from equation 4 would appear as lesions (d Y/dr)
in a single step at time 1, + p. Since variable latency is the general
rule for known pathosystems (18; and 21, pages 68-69), an
alternative submodel for the differential appearance of lesions in
time was sought. In pest modeling, several approaches have been
used to handle age or stage structure problems (15,22). The various
ages of infections could be handled in matrices or as eigenvalues
and eigenvectors. Both procedures are sometimes difficult to
handle and interpret. The matrix approach results in a waste of
computation time and storage because the matrices are comprised

mostly of zeros. An alternative and seemingly preferential
approach (15,22) is to use a distributed-delay function to generate a
distribution of stage-completion times. In its simplest form, the
infections would flow through a series of substages (a) and emerge
as a distribution of developing times described by the gamma
(Erlang) function. If there is one substage (@ = 1), the distribution
of appearing infections would be a negative exponential. If ¢ =5,
the distribution approaches a normal curve (Fig. 1). Thus, the
distributed-delay function is a very versatile function for the
modeling of variable stage-completion times. The time of
appearance of the first lesion (po) and last lesion (pm.), the
duration (pma — po), the LPso, and the shape of the curve for
variable latency of various pathosystems can be closely
approximated by adjusting the number of substages and the
development rates (kp) between them. For our simulations, the
development rates between substages were held equal; i.e.,
kot = kp:=kps=...kp, Asoneexample,ife = 2and k, = 0.95,
then 95% of all lesions of synchronous infections would appear
within five days of pg in a near-monomolecular fashion.

Lesion expansion. For some pathosystems, the rate of lesion
expansion is primarily a function of ambient temperature and tends
to be linear over time (2). The lesion expansion in the disease-
progress model was handled as a simple additive function to
equation 5:

dY/dt=dlt —p) /dt + XY (7)

in which X is the rate of lesion expansion per unit of diseased area.

The general model is represented by equations for d L/dr, d//d¢,
d ¥/dt, and y. These equations were solved by computer simulation
using the CSMP programming language (11) with the rectangular
integration option. The source code for the model in CSMP s given
in Fig. 2; this particular example has four substages for infections in
the distributed-delay function to achieve variable latency. An
integration time step (Ar) of 0.05 days was used. The simulations
were runonan IBM 3081 computer in the Northeast Regional Data
Center at the University of Florida, Gainesville, An alternate
program of the model was written in BASIC language for
microcomputers.

SIMULATION RESULTS

Host growth. The host-growth curves generated by the logistic
function in the combined host-growth/disease model were

e

Proportion of lesions

T 5 3 m
Days

Fig. 1. The variable appearance of lesions over time from synchronous
infection on day 20 and a minimum latent period of 6 days. The curves for
variable latency were obtained with zero to six substages in a distributed-
delay function, With zero substages, all lesions appeared on day 26; with six
substages, lesions continued to appear over more than 13 days.
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sigmoidal regardless of the intensity of disease or the model chosen
for the disease progress. To simulate a nearly mature crop, an initial
high leaf area (Lo = 4,550 cm’) and slow growth rate (k, = 0.01)
were used. Intermediate values for these parameters were also
tested. When growth rate (k,) was increased, the growth curves
remained sigmoidal but the maximum leaf area ( Lm.) was reached
earlier.

In addition to the logistic equation, several other functions for
host growth were examined. The derivatives of these functions were
substituted for equation 2 in the combined model: linear
(dL/de = k;(1—y),k; = 60): exponential (dL/dr = Lok, exp(k,t)
(1 =), k= 0.033): or Gompertz (dL/dt = k; L (—log, L/ Lmx))
(I = ), k; = 0.07). The generated host-growth curves with these
latter equations were typical for the respective function.

Host growth and disease. Simulated disease progress was
sigmoidal when the modified logistic equation was used as the
infection model. The average epidemic rate (r) generally increased
with each increase in the rate (k;) of host growth, even though ky
was constant. However, when initial leaf area was high (Lo =100
cm’) or growth rate was very fast (k; >0.35), most of the host
growth occurred while y <0.01. Consequently, increases in either
initial host area or host growth rate above these aforementioned
values had no noticeable effect on the epidemic rate. The rate of
host growth had an effect on epidemic rate only when considerable
host growth occurred at y >0.01.

When generated host growth was slowed (k; = 0.01) for 10 days
during the epidemic (e.g., when y = 0.2 and r = 0.1) and the
epidemic was allowed to proceed at a constant infection rate
(ky = 2), the average epidemic rate quickly became more rapid
(r = 0.25) in the period in which host growth was slow. This rapid
increase insimulated disease occurred with both variable and fixed

TITLE CISEASE PROGRESS MODFL WITH
TITLE CISTRIBUTED GCELAY
MEMORY LCGITZ

MEMORY A1COT

INITIAL

PARAM LO=1.

FARAM LMAX=4600.

PARAM INFO=1.0E5E-1

PARAM YO0=1.0E-2

PARAM KL=,27

PARAM KY=2,

PARAM KD=95

PARAM P=5,

PAFAM LX=0.

DYNAMIC
LOCT=KL*LA*(1e—Y)*(le—LA/LMAX)
INFDOT=KY%XY A% (1.—TINFA/LA)
TINFA=INTGRL(INFO, INFDCT)
LA=INTCGRL(LO,LDOT)
AICCT=CELAY (10+P, INFCCOT)
A2DCT=KD* A1

A3DDT=KD*A2

AADOT=KC*A3

ASDOT=KD* A4
AL1=INTGRL(0++A1COT-A2D0T)
A2=INTGRL(0+s A2CCT—A3COT)
A3=INTGFL(0.+A3DCT=A4DCT)
A4=INTGRL(0.+A4DCT-ASDQT)
YA=INTGRL(YOs ASCOTHL X*YA )
Y=YA/LA
YDIS=LIMIT(.CCC S999,Y)

lse
LOGIT =ALDG(YDIS:’( 1.—YDIS))
LOGIT2=DELAY(10+2¢4+L0GIT)
VOPR=(LOGIT-LOGIT2)/2.

TERMINAL

TIMER FINTIM=90es0UTDEL=1,+DELT=.05
PRTPLCTY{(OeslesLAsYAASCCT)

PRTPLOT LOGIT(—€e sSes VDPRJALIDOTLTINFA)
EﬁBPLUT LA (0e34600e+LCOT,s INFDOT)

Fig. 2. CSMP source code for the disease-progress model during changing
host growth. In this example, four substages (Al-A4) arc used in a
distributed delay to achieve variable latency.
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latent periods and resulted in the earlier occurence of high disease
intensity that subsequently limited total host growth,

The simulated disease-progress curves with the logistic-infection
model were also sigmoidal when host growth was generated with
either the linear or Gompertz functions. For both host-growth
functions, the (I — p) feedback mechanism caused a gradual
slowing of host growth that reached an asymptote of L. lower
than without the feedback. With the exponential host growth
function, early disease progress was sigmoidal but the disease
progress reached an asymptote at y <<Il. The asymptotic level was
dependent on the rates ky and k; and occurred when the daily
infected area (d//d¢) was equivalent to the daily host growth
(dL/dt). With k; = 0.094 and ky = 2, the asymptote was y = 0.37;
whereas at ky = 5, the asymptote was y = 0.41. Even though both
host area and infected area were increasing at an exponential rate
(<k;), the epidemic rate was virutally zero (r = 0+ 0.001) for >30
days.

Simulations of disease progress were also made without the (1 —
») feedback mechanism on host growth. For all four plant growth
functions, the disease increased sigmoidally until all available
healthy host area was infected. Thereafter, the disease-progress
curves mimicked the host-growth curve in shape and rate.

Reduction in initial disease. If host growth was increasing when
» >0.01, then the epidemic rate (r) increased with each reductionin
initial infected (/o) and initial diseased (Yo) areas. If most host
growth occurred prior to y = 0.01, then epidemic rate was not
affected by decreasing /o and Yo; however, the time to y = 0.5 was
delayed.

Variations in infection rate (ky). In equation 4, the latent period
is included intrinsically because the daily infections are dependent
upon the diseased area and not directly from the total infected host
area. With this inclusion of the latent period in the equation, the
values of infection rates (ky) were not in the numerical range of
values usually associated with the average apparent infection rates
(r) for many fungal leaf diseases (0.1 < r <0.6) (21, page 216; 23,
pages 166 and 326). The values of ky for epidemics of most leaf
diseases are expected to be in the range 0 <k y <<20. The calculated
epidemic rates for the period between y; = 0.01 to y> = 0.9 ranged
from r=0.15 for simulations with ky= 0.5 to r = 0.425 for
ky=10.

}Epidemic interruption. In some simulations, the infections were
halted (ky=0) in certain time periods to mimic the effect of
unfavorable weather for disease or the application of a control
procedure. This interruption in infection resulted inan interruption
of disease, offset in time by one latent period. When this
interruption of infection occurred during ongoing host growth, the
epidemic rate after the interruption was about twofold faster than
the average rate prior to the interruption (Fig. 3). A faster rate after
an epidemic interruption has been frequently observed in natural
pathosystems (3). The increasing host growth during the
interruption diluted the diseased area and resulted in a negative
epidemic rate. The epidemic rates during the interruptions became
less negative as the values of y at the time of the interruption were
higher. If host growth was slow (e.g., k; = 0.01) during the
interruption, the epidemic rate was positive but slow. After the
interruption, the epidemic rate was faster than before the
interruption (Fig. 4), but was less than when host growth was
substantial. The rapidity of change in epidemic rate from average to
slow to fast during these epidemic interruptions was dependent
upon the parameters of variable latency. If the latency was not
variable (¢ = 0.and e.g., po, LPso, and pmx = 9), the epidemic rates
changed abruptly, and were displaced in time from the interruption
by one latent period (Fig. 5). With variable latency (e.g.. a =4,
po =15, LPsxx=9,and pu. = 17), the changes in rate following the
interruption were gradual swings because of the late- and early-
appearing lesions (Figs. 3-5). Additional infections would
contribute to slightly higher epidemic rates if ky >0 during the
interruption.

Other disease-progress models. Although the logistic equation is
commonly used to model disease progress, the curves generated by
this equation do not always depict the natural disease progress in
carly epidemic stages (5). Consequently, other disease-progress



models may be more appropriate and can be substituted for the
general logistic-infection model (equation 4), Some simulations
were made with a modified Gompertz function in which infections
were calculated as:

dl/dt = ky ¥ (—log,(I] L)). (1

The Gompertz-infection model provided faster disease progress
than the logistic model when y <<0.05 (Fig. 6). When k y increased
from 0.5 to 10 with the Gompertz model, the average epidemic rates
(r) increased from 0.2 to 0.46. The response during epidemic
interruption with the Gompertz model was similar to that obtained
with the logistic model.

Lesion expansion. As lesion expansion increased from X = 0 to
X = 0.5(50% per day), the epidemic rates also increased (e.g., from
r=10.2 to r=0.3). Simulated disease-progress curves were less
sigmoidal and more exponential when lesion expansion was
substantial (Fig. 7).

DISCUSSION

The logistic equation as used by Vanderplank (21) to describe
disease progress is simple, versatile, and extremely useful to
interpret epidemic rates. However, because of the simplistic nature
of the model, considerable biological realism is lost. Interpretation
of the curve shape and epidemic rate has often been hampered by
the lack of specific information on changes in host leafl area (3).
Various important epidemiological parameters are included in the
new model (equations 4, 5, and 7), and the interpretation of the
curves is improved.

Vanderplank (21, pages 68—-69) was aware of the problem of
variable latency and he provided several examples to show that the
mean value of p, rather than a constant value of p, provided only a
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_4 ' n 1 i 1
30 40 50 60 10 80 90
Days
Fig. 3. Simulated disease progress (logit scale) following 10-day

interruptions in infection for four indicated periods during host growth at
ki =0.14 from L, = 1. The bold line represents uninterrupted disease
progress at ky = 2. The decreases in discase for 10 days after the latent

periods (p = 5 days) occurs because of host growth.

slight error in the estimation of r. In our simulations, however, the
differences in responses from a mean value of p and a constant p
were substantial, both for progress of the general epidemic and for
the changing rates around epidemic interruption (Figs. 5 and 6).

Log, (y/(1-y))

_E 1 1 1 1 1
30 40 50 60 10 80
Days

Fig. 4. Simulated disease progress (logit scale) following 10-day
interruptions in infection during minimal host growth at k; = 0.01 from
Lo = 4550, The bold line represents uninterrupted disease progress at
ky = 2. The epidemic rate is faster than in Fig. 3 because host area is not
limiting disease progress.

------ P9, LP,=9, a=0,KY=2 /

P=5, LR~ 9, a=4, KY=2 /

Fig. 5. Simulated disease progress following interruption in infection for 10
days for two instances of variable latency (@ = 0 and 4). In both instances.
the median appearance of lesions ( L Pso) from synchronous infections was 9
days.
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Serious errors in interpretation of disease-progress curves could
result if the variable latency of infections is ignored.

Vanderplank (21, page 77) was also concerned with the effect of
expanding lesions on the epidemic rate. Our lesion expansion
function (equation 7) is too simplistic to represent the average
growth of all lesions at all epidemic stages. In actual epidemics, the
relative lesion expansion rate slows as lesions become crowded
(19). It may be more satisfactory to develop a separate submodel
for lesion expansion, with the submodel based on the density and
ages of lesions.

The new infection model provided realistic curves of disease
progress with the interaction of host growth. The model was used to
aid the interpretation of previous perplexing epidemiological

—
1.0 —
— o
————— logistic:p=9, LF =9, a=0, KY=2 / ;f
S[—— logistic:n:5, LP29, a=4, Ky=2 ¥ /
i’ !
——--Gompertzp:5, LRz 9, a=4, K¥=13 / ,"
A
A
&
.
5
A
JF
P
A f
L
) 0 "

Fig. 6. Simulated disease progress for the Gompertz-infection model and
the logistic-infection model with two instances of variable latency (a = 0
and 4). All curves began at yy = 0.0001.

B 3 1[esfmf/ 0 T

L4 = L L i 1 1

0 n 3 1 50 60 0

Fig. 7. Response of increasing lesion expansion (X) on simulated disease
progress. Values of X are proportional increase of all diseased areas perday.
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responses. The rapid disease progress following epidemic
interruption was once thought to be caused by unusually large
amounts of inoculum that saturated the available host tissue (23,
page 224). Further, the increase of epidemic rate with the decrease
in initial disease defied accurate interpretation (9,16). With the new
model, both phenomena could be interpreted solely by the amount
and proportion of uninfected host area and not by any changes in
parameters related to the pathogen.

We used the total leaf area (L) as being vulnerable to infection,
but this is not realistic for some pathosystems. If mature tissue is
resistant to infection, only the newly emerging tissue should be
entered into the model. The disease-progress curves would mimic
then the host-growth curve in shape and rate as has been seenin two
pathosystems (1,2).

The quantification of host growth in the disease-progress model
provided substantial improvement in interpretation of the progress
curves. Apparent infection rates are generally calculated from the
proportion of visible disease. Serious errors could result if the
interpretation of the disease-progress curve is based on these
apparent rates. A rate near zero would be interpreted as very slow
disease increase, when in actuality, the disease and host growth
could be increasing at exponential rates. The apparent infection
rates would need to be corrected for host growth either as
Vanderplank suggested (21, pages 94-96), or by the simple addition
of the rate of host growth to the apparent infection rate for
proportions of visible disease. For example, if the host was
increasing at a logistic rate of k, = 0.2 and the apparent infection
rate for visible disease was r = 0.18, then the corrected rate would
be r. = 0.39 (0.21 + 0.18).

In disease management, it is most difficult to estimate the speed
and amount of disease increase following epidemic interruption.
The new model should provide a reasonable estimate of this disease
increase.

The infection model may have broad applicability in crop-loss
determinations, because the feedback mechanism limits host
growth. Disease stress in the form of reduced total host area and the
intensity of disease thereon can be specifically partitioned.
Decision thresholds for control application will be easier to define
on the basis of the generated Land Y from the simulated epidemic.
The (1 — y) feedback function may be too severe or too mild a
correction for some pathosystems. In the presence of disease, some
hosts may respond by compensating with additional growth, other
hosts may senesce earlier. Also, the implied linear relationship in
the feedback of disease intensity and host growth may not be
accurate over the range of 0 << y < [.

The combined model with its numerous mathematical variations
can be the initial model to develop an epidemic simulator of any
pathosystem. The researcher needs only to choose the
representative functions and parameters that fit the natural host
growth and disease progress. With the addition of variable latency,
lesion expansion, and other submodels, the simulator could
become as complex and as detailed as the researcher desires.

The growth rates ky and k, as we used them in the combined
model can be considered maximum rates. As the epidemic limits of
various pathosystems become known, the rates kyand k, can be set
as a function of certain environmental parameters. The combined
model could then be used to obtain real-time simulation of the
selected pathosystem.
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