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Accurate measurements of disease severity are important in any
study relating disease severity to disease losses. Accurate
measurements of disease severity are also very important in
developing epidemiological models useful for predicting disease
losses in food crops. Sherwood et al (28) have shown that errors in
measurement of disease severity cause estimates of temporal
disease progress to differ significantly from the true rate of disease
increase.

Many of the procedures used for estimating disease severity are
either subjective or qualitative and thus do not satisfy the exacting
requirements for quantitative estimates of disease severity.
Although accurate measurements of disease severity are required in
studies determining disease losses, few workers (12,13,28) have
given critical attention to the accuracy or precision of these
estimates.

Visual assessment of disease severity. Until recently, visual
estimates of disease severity have been used almost exclusively.
Many different methods of estimating disease severity developed
by various workers are described in recent reviews (2,6,17,18).
Although these methods often are useful in collecting data for
studies of disease-loss appraisal, epidemiology, or disease
resistance, they are not sufficient for all purposes. The specificity of
these methods to a given disease or the difficulty of their
application have limited their adoption by other workers (6,17).

Methods for visual assessment of disease generally fall into two
categories. In the first category are pictorial descriptive keys that
show plants with varying amounts or types of disease symptoms
(17). This type of visual key for assessing disease severity are
exemplified by those used for assessing late blight of potato which
is caused by Phytophthora infestans (Mont) de Bary (1) or blight
diseases of corn (30). Such visual assessment keys have been used
successfully by single observers to estimate disease intensity of host
plants of differing disease resistance, or of host plants subjected to
differing environmental conditions or cultural procedures. Since
visual assessment keys often set arbitrary levels of disease severity
based upon symptomatology, several problems exist. Different
observers using the key to evaluate diseased plants of similar
symptomatology do not always obtain similar estimates of disease
severity. Ina detailed study, Sherwood etal (28) demonstrated that
experienced observers utilizing identical assessment keys generated
significantly different disease estimates for a set of diseased leaves.
A key designed to estimate disease severity based upon
symptomatology of one plant cultivar may not be applicable to the
disease symptoms manifested on other plant cultivars. Finally, the
use of these keys does not allow easy interpolation of intermediate
levels of disease severity.

Visual methods of disease assessment in the second category
utilize standard area diagrams. Pictorial representations of the host
plant with known and graded amounts of disease are compared
with diseased leaves to allow estimation of disease severity.
Excellent reviews on the use and construction of standard area
diagrams have been written by James (16,17). Examples of
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standard area diagrams in current use include those for apple scab
(8,18), common scab of potato (16,20), and wheat rust (7,24,27).
The Cobb scale for assessment of wheat rust was among the first of
the standard area diagrams that have been developed and is
superior to later versions of this scale because estimated disease
severity is proportional to the absolute area of the leaf that is
diseased, and not expressed as a percentage of an arbitrary
maximum severity value (17). In contrast to visual assessment keys,
standard area diagrams allow estimation of intermediate levels of
disease severity by comparing a diseased plant with diagrams
showing both more and less disease.

In 1945, Horsfall and Barratt (13), noting the Weber-Feckner
law, emphasized the limitations of the eye as a sensing device in the
assessment of plant disease. The Weber-Feckner law states that the
visual acuity of the eye is proportional to the logarithm of the
intensity of the stimulus. These authors also noted that in visually
estimating disease severity, the observer actually assesses the
diseased portion of leaves having <50% injury and the healthy
portion of leaves having >50% injury (12,13). Horsfalland Barratt
developed a disease-rating scale containing 12 equal divisions of
disease severity on a logarithmic scale with a median value of 50%.
Thus, divisions of this scale included decreasing ranges of disease
severity when either increasing or decreasing from 50% disease
severity (12). This scale (12,13) and many standard area diagrams
constructed recently (17,19) account for the logarithmic decrease in
acuity of the eye in estimating disease severities approaching 50% in
their selection of representative keys. Estimations of disease
severity intermediate between two keys are made by careful
interpolation (17). However, the errors in such estimates are
maximum at disease severities approaching 50%.

Visual estimates of disease severity can differ significantly from
the true amount of disease. If the observer was not subject to
limitations in visual acuity at the midrange of disease severity,
estimated disease severity and actual disease severity would be
linearly related, and the variance of estimates would be
independent of disease severity (Fig. 1). However, the Weber-
Feckner law indicates that the true confidence interval of estimates
of disease severity approach the expected linear relationship at
both low and high disease levels, but depart increasingly from this
line with increasing disease severity with a maximum variance at
509 disease (Fig. 1). Serious errors in predictions of yield losses or
other functions of disease severity result because errors in visual
estimates of disease severity are not independent of the level of
disease.

The pattern of disease symptoms on plant parts can also
influence visual estimates of disease severity. In a detailed study,
Sherwood et al (28) demonstrated that the number of lesions on a
plant part biased disease severity estimates generated by most
observers. Regression analysis showed that errors in disease
estimates were directly related to the number of lesions on a leaf
(28). The irregular bipinnately compound leaves of the bracken
fern ( Preridium aquilinum L. Kuhn) as well as the irregular lesions
caused by Ascochyta pteridis Bres. on this host (32) (Fig. 2) make
this disease especially difficult to evaluate by using pictorial
assessment keys (22). These factors caused differing amounts of
bias in estimates of severity of lesions on bracken fern depending
upon the level of disease severity (S. E. Lindow, unpublished).



Errors in visual estimates of disease severity increased with
increasing disease severity to about 50% frond area infected, as
expected from the limitations in visual estimates described in Fig. 1.

Remote sensing and analysis of photographs of diseased plants.
Remote sensing procedures have proven valuable in assessment of
plantdisease. False-color aerial infrared photography has been the
remote sensing procedure most commonly utilized to detect plant
diseases (4,5,11,14,15,26,29,31). The detection of diseased plant
tissue on false-color infrared film is due to its greater reflection of
near infrared light (A = 700-950 nm) compared to healthy tissue
(10). Color infrared photographs have been analyzed with
microdensitometers or other types of electronic scanning devices to
quantitate disease severity (29,31). Because most aerial infrared
photographs are taken from altitudes ranging from 100 to 20,000
m, the resolution of such photographs is usually low, allowing
estimates only of disease incidence and not severity (29). However,
severity estimates of diseases not occurring in foci have been made
for whole fields from analysis of color infrared photographs (26).
The high cost and inconvenience of taking and analyzing color
infrared photographs has limited the employment of this method
for estimating disease severity of single plants or leaves.

Disease severity of single plants has been assessed accurately by
analysis of photographs of the plants (9). Photographic 35-mm
transparencies of cleared wheat leaves infected by Septoria tritici
were scanned with a television beam to quantitate the area of
infected tissues and the area of individual pycnidia. The
inconvenience of clearing and photographing individual leaves and
the need for specialized electronic equipment has restricted the use
of this procedure for assessment of disease severity of single plants.
Although the analysis of photographs of diseased plants is very
accurate, a more convenient and versatile automated disease
assessment procedure would be desirable.

Microcomputer-controlled digital video image analysis.
Recently, video image analysis has been used for assessment of
plant disease severity (3,21,22,25). Video image analysis avoids
some of the problems inherent in visual analysis of plant disease
severity because the response to an optical stimulus is more nearly
linear with intensity. Recent advances in electronic and computer
technology allow video cameras to interface directly with a
microcomputer. Rapid, automated, nonsubjective estimates of
disease severity are made possible by computer-controlled analysis
of video images. The analysis of video images is useful for the
assessment of only those plant diseases with lesions having a
different color from healthy tissue, or those with lesions that can be
contrasted with healthy tissue by optical procedures (3,22,25).
Commercially available video image systems have accurately
estimated the extent of wood decay of stained cross sections of trees
(3) and the severity of foliar diseases from samples of individual
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Fig. 1. Relationship between true disease severity (abscissa) and visually
estimated severity of disease (ordinate) with no errorin estimates (- Jand
confidence limit of estimates with error a function of the logarithm of
disease severity (-----),

leaves or from photographs of leaves or groups of plants (25).
Although these systems provide the technology needed for a major
advancement in disease assessment, they are either relatively
insensitive (resolution of only eight shades of grey) and inflexible
(3), or quite expensive ([25]; and H. Nilsson, personal
communication).

Apple II-controlled digital video image analysis. An automated
disease assessment device has been developed that interfaces an
inexpensive Apple 11 Plus microcomputer (Apple Computer, Inc.,
Cupertino, CA 95014) with a closed circuit television camera, or
video tape recorder via a DS-65 analogue-to-digital converter (The
MicroWorks, Del Mar, CA 92014) (22). Most video images are a
composite of a series of 254 lines and 254 columns which comprise a
collection of some 64,000 individual picture elements (pixels). To
assess leaf area and necrotic tissue area, video images are digitized
and the data processed by a microcomputer. Individual picture
elements in the video image are located, and pixel intensity
quantified by using the DS-65 digisector video digitizer interfaced
with an Apple 11 Plus microcomputer. The DS-65 video digitizer
converts an analog signal of a given pixel to a digital value with a
resolution of 64 levels of grey (from 0 for black to 63 for white). The
variable contrast adjustment on the DS-65 peripheral is set at
minimum contrast for optimum performance. Individual pixels at
predetermined locations in the video image are located and
digitized under BASIC and Assembly language program control by
the Apple Il computer. Thus, eitherall or a predetermined subset of
the pixels comprising a video image are selected for further
analysis. Assembly language programs were written to allow rapid
addressing and retrieval of digitized pixels for routine operation of
the disease assessment device. Both Assembly and BASIC
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Fig. 2. Irregular shape and distribution of dark necrotic lesions on bracken
fern infected by Ascochyra preridis.
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programming codes and data are readily stored, changed, and
retrieved for execution from a floppy disk subsystem of the Apple
I computer.

Correct operation of the automated disease assessment device
requires contrast in brightness between the video image of healthy
and diseased plant tissue and between plant tissue and background
material. Sufficient contrast between these objects on leaves having
relatively light-colored lesions is obtained by illumination of plant
material placed on a black velvet surface in a light-tight box with
red light (A >620 um) to minimize visible fluorescence and to
enhance brightness contrast between green and nongreen (red light
reflecting) plant tissue. A red filter placed over the lens of the
portable camera operated in sunlight may also maximize contrast
between healthy and diseased tissue photographed in the field. A
continuous video image of plant tissues is generated with a black-
and-white video camera (RCA model TC 2011) equipped with an
8-mm wide-angle video lens (22) or with a portable color video
camera (Panasonic model PK-801). Optimum camera performance
is achieved by operation of the camera with the automatic gain
control off, with the peak averaging controls responsive only to
average scene brightness, and with the gamma controls set to
reduce contrast in the darker areas of the picture. Sufficient
contrast between healthy plant tissue and diseased tissue having
darkly pigmented lesions is achieved by placing diseased leaves ona
light grey background material, and by placing a yellow filter over
the lens of the video camera.

Sorting of pixels of a video image according to magnitude (shade
of grey) permits the estimation of leaf area and area of necrotic
lesions. Pixel intensities corresponding to video images of
background, healthy, and diseased plant tissue are placed in one of
three defining categories (22). Two pixel thresholds (three
categories of pixel intensity in the range from 0 to 63) are adjusted
to minimize the number of improperly grouped pixels. The
determination of the two pixel intensity thresholds is simplified by
depicting pixels of each of three different intensity ranges in one of
three colors on the Apple Il video monitor. Both pixel intensity
thresholds are then adjusted until an image corresponding to
diseased and healthy tissue on a uniform background is clearly
depicted on the Apple 11 video monitor. Most pixels from images of
healthy green leaf tissue commonly have magnitudes >5, but <45,
while most pixels from images of necrotic leaf tissues have
magnitudes either >45 (light-colored lesions) or <5 (darkly
pigmented lesions). A regular array containing 16,232 individual
pixels of an entire video image can be located, digitized and
grouped into each of the above three categories in 3.7 sec. The
fraction of total pixels grouped into the three magnitude categories
corresponding to background, healthy and necrotic leaf tissues
yield aninitialapproximation of the proportion of the video image
corresponding to each of these three objects. Factors contributing
to variance in the area determinations include light intensity,
camera aperture and performance, and the type of plant, ie, the
shade of green of healthy leaf being examined.

Corrections to the initial area approximations are made by
separately estimating the fraction of pixels incorrectly assigned to a
given category. Prior to analysis of a given plant species, a small
area of the video image delimited by 992 pixels occupied exclusively
by healthy leaf tissue of this species is digitized and categorized into
the three magnitude categories. This analysis yields an estimate of
the small fraction of pixels corresponding to healthy leaf tissue that
would otherwise be incorrectly grouped in the category
corresponding to the background. Similarly, another initial
analysis of approximately 9,000 pixels occupied by healthy leaf
tissue of a given plant species yields an estimate of the small fraction
of pixels that would be incorrectly grouped into the category
corresponding to necrotic leaf tissue. Anarea containing 992 pixels
in the corner of the video image occupied exclusively by uniform
background also is automatically digitized prior to and following
each analysis of an entire video image containing both healthy and
necrotic leaf tissue on a uniform background. An analysis of this
background at each determination allows estimation of the small
fraction of pixels corresponding to background that would be
incorrectly grouped in a category corresponding to healthy leaf
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tissue.

Determination of the areas of healthy leaf and necrotic leaf
tissues can be summarized in the following five steps. First, initial
estimates of the background, healthy leaf, and necrotic leaf areas
are obtained by digitizing a specific portion of the video image and
grouping the individual pixels into three magnitude categories.
Second, correctional algorithms under BASIC programming
control, utilizing initially determined estimates of the portion of
healthy leaf incorrectly categorized as either background or
diseased leaf tissue, as well as estimates of background incorrectly
categorized as healthy leaf tissue, are employed to yield final
corrected estimates of the total video image corresponding to
background, healthy, or necrotic leaf tissue. Third, computational
algorithms, including those describing the area observed by the
video camera as a function of distance, are utilized to calculate
areas of leaves and/ or necrotic lesions. Availability of a value for
average lesion size also permits calculation of the number of lesions
per leaf. Fourth, final results of a given sample are displayed ona
second video monitor, printed on a hard copy printer, and stored in
the memory and in a floppy disk subsystem of the Apple Il
computer. Finally, statistical calculations utilizing stored data are
automatically computed in real time under BASIC programming
control following completion of each experiment. A single
determination of leaf area and necrotic leaf area including
estimation of error factors and correctional and computational
algorithms requires 4.1 sec (22). A set of 100 individual leaves or
plants placed before a laboratory based video camera or remotely
recorded video images (Fig. 3) can be processed in less than 45 min.

Fluctuations in light intensity and camera performance as well as
differences in green pigmentation in healthy leaves due to varietal
or cultural differences require that automatic corrections be made
to ensure reproducibility of determinations. Correctional factors
obtained from the initial distribution of pixel magnitudes of
healthy leaves and automatic analysis of pixel magnitudes of the
dark background in each determination greatly reduce variability
in system performance. The average extreme determination of total
or necrotic leaf area differed from the mean of five successive
observations of a given leaf by only 0.8% (22).

Increases in system performance with increasing numbers of
pixels analyzed is associated with progressively longer execution
times. Analysis of approximately 25% of the total pixels in each
video image was chosen as an acceptable compromise on system
performance and efficiency. Only small improvements in the
resolution and reproducibility of the automated disease assessment
system were obtained by increasing the number of pixels digitized
and categorized from the 16,232 routinely analyzed.

The automated disease assessment device performed well on
intact potted plants as well as on detached leaves. Average disease
severity was determined by reading several leaves simultaneously
with error approaching those of single leaves if the potted plant was
illuminated with a uniform and diffuse light source.

The total area of healthy and lightly colored diseased tissue of
several plant species calculated from analysis of laboratory-based
camera-generated video images very closely matched the actual
areas as determined with a planimeter (22). The accuracy of
assessment of total and diseased leaf areas was independent of leaf
size or disease severity (22). The average error in calculation of
pinto bean (Phaseolus vulgaris) leaf area from digital image
analysis was approximately 1.2%. Total leaf areas of other plants
with highly irregular leaves such as bracken fern or tomato
(Lycopersicon esculentum L.) were also computed from video
image analysis with an accuracy of greater than 98.09%. The
diseased areas of leaves of tomato infected with Alrernaria solani
Ell. & G. Martin, bracken fern infected with A. preridis, sycamore
( Platanus racemosa Nutt.) infected with Microsphaera alni DC ex
Wint., and California buckeye (Aesculus californica (Spach) Nutt.)
with marginal leaf necrosis were highly correlated (coefficient of
determination = 0.97; P <<0.01) with the actual areas of diseased
tissue. Estimates of necrotic frond area based on visual assessment
keys were much less precise than estimates made from video image
analysis (22). Whereas estimates of diseased leaf area from visual
assessment keys approached those obtained from video image



analysis and those determined with a planimeter at both low and
very high disease severity, large errors were incurred at
intermediate disease severity levels (22).

The accuracy of estimates of disease severity obtained using
video image analysis was high and appeared independent of both
the complexity of the host-pathogen system and disease severity.
Regressions of disease severity estimated by the automated disease
assessment device to disease severity determined with a planimeter
had slopes very close to 1.0. The 95% confidence limits for

Fig. 3. Analysis of remotely recorded video images for estimating disease
severity. A, Operation of hand-held portable color video camera focused on
a group of four to six leaves with a black velvet tarp as a background.
Images are shown recorded on a portable video cassette recorder. B,
Analysis of recorded images stored on video tape (1) linked to the Apple 11
Plus computer (2) and a video monitor (3). Analyzed data or false-color
representation of pixel intensity are displayed on another video monitor (4)
or results of individual measurements are printed (5).
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individual determinations averaged within £2.0 percent of the
expected value obtained by regression for each of the four diseases
examined with laboratory-based cameras.

The area of darkly pigmented lesions on leaves was also
accurately measured by analysis of video images. The percentage
leaf area of Raphiolepsis indica (L.) Lindl. leaves with dark brown
spots caused by Entomosporium maculatum Lev. calculated with
the automated disease assessment device was highly correlated with
the actual percentage diseased area (Fig. 4). Similarly, the area of
dark red marginal necrosis caused by water stress on leaves of
liquidambar (Liquidambar styraciflua 1..) were also highly
correlated with the actual necrotic leaf areas (Fig. 4). As with
relatively lightly pigmented lesions, the 95% confidence limits for
individual determinations of dark lesion areas averaged within
1.8% of the expected value. Error in estimating severity of darkly
colored diseased tissue was independent of true disease severity
(Figs. 4 and 5).

While the speed and accuracy of the laboratory-based automated
disease assessment device should make it useful for evaluation of
the hundreds of leaves that may be required for a systematic
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determination = 0.988 (P << 0.01).

Vol. 73, No. 11, 1983 1579



sampling of field material (2), there are limitations to this
procedure. For example, many types of field-grown plants are too
fragile to transport to the laboratory for analysis by a laboratory-
based video camera. This problem can be overcome by recording
images of diseased plants remotely and analyzing the recorded
video image in the laboratory. The percentage leaf area of Quercus
lobata Nee covered with mycelia of Sphaerotheca lonestris Harkn.
was calculated from analysis of remotely recorded video images of
diseased leaves and was correlated with the actual area of fungal
colonization (Fig. 6).

Analysis of remotely recorded video images to assess disease
severity has several advantages to laboratory-based video cameras:
average estimates of disease severity can be made readily by
observation of several leaves or plants simultaneously; perishable
or sporulating plant material can be observed in situ; repeated
observation of the same plant tissues can be made due to the
nondestructive nature of the remotely recorded video images.

The microcomputer-directed video image analysis system
discussed here was shown to be more accurate and reproducible in
quantifying severity of foliar diseases than the visual assessment
keys used currently (22). The microcomputer-controlled
automated disease assessment device was designed to be largely
self-correcting for variations in system performance and among the
diseases under investigation. Internal correctional algorithms
utilized by the computer maximize reproducibility with a 95%
confidence interval of <1.0%.

Additional improvements in system performance could be
accomplished by initiating optical changes such as measuring near-
infrared radiation instead of different visible wavelengths. Manzer
and Cooper (23) have recently reported success in observing potato
late blight symptoms by remote observation of potato fields with a
video camera responsive to near-infrared light. Interfacing such a
modified video camera to the microcomputer-controlled video
image analysis system described here may increase the sensitivity
and versatility of this procedure.

The accuracy of estimates of foliar disease severity obtained by
video image analysis varies inversely with the dimensions of the
plant sample being analyzed. Increasing the number of leaves or
plants included in one observation will reduce the accuracy of mean
disease severity estimations. Therefore, a more accurate
determination of mean disease severity may be obtained by
randomly sampling a larger number of individual leaves or plants.
The speed and accuracy of the automated disease assessment device
would be ideal for such a purpose. The video image analysis system
described is useful for determining disease severity on a large
number of individual leaves to determine average disease severity
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Fig. 6. Relationship between percent of oak (Quercus lobata) leaf area
covered with mycelia and conidia of Sphaerotheca lonestris as determined
from dissection and weighing of enlarged black-and-white photographs of
diseased leaves (abscissa) and as computed by video image analysis
(ordinate) of recorded images of leaves. The line drawn represents the linear
regression ¥ = 0.904.X + 0.81; coefficient of determination = 0.993 (P
<0.01).
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of infected foliage. Because measurements of foliar diseases by the
automated device are automatically placed in the microcomputer,
rapid automatic statistical analysis of results are possible without
the further data manipulation required of visual or other
assessment methods.

The system described above is a laboratory-based device, but
field measurements of exposed symptomatic leaves were accurately
analyzed from remotely recorded video images. Unfortunately,
symptomatic leaves of many foliar diseases are within the plant
canopy where they remain unexposed to remote sensing, and are
therefore not included in the sample from which mean disease
severity values are estimated. Disease assessment based upon
remotely recorded video images may not be accurately applied in
this situation.

The entire automated disease assessment device described here is
relatively inexpensive ~$3,000). Since it utilizes an Apple 11 Plus
microcomputer common in many laboratories, it can be
implemented very inexpensively in laboratories already possessing
this microcomputer.

The possible uses of video image analysis in plant pathology
research are many and varied. Since both total and necrotic leaf
area of intact plants can be monitored by video image analysis, this
procedure is useful for in situ measurements of plant growth as
influenced by plant pathogens or of the dynamics of lesion
expansion of many foliar pathogens. Quantitative measurements
of disease severity by procedures such as digital video image
analysis will be helpful in testing and developing models of
quantitative epidemiology, in studies of plant pathogens as
biological control agents of undesirable host plants, and in studies
relating disease severity to crop losses.
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