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ABSTRACT

Minogue, K. P., and Fry, W. E. 1983. Models for the spread of disease: model description. Phytopathology 73:1168-1173.

Some relationships between the spatial and temporal characteristics of
epidemics are investigated with the aid of two models of plant disease
spread. Based on these models, a new measure of the disease gradient (g) is
proposed, which provides a simple link between the gradient steepness, the
velocity of spread (v), and the apparent infection rate (r): Specifically, the
relationship is g = r/v. It is shown that the disease gradient is not an
unambiguous measure of host resistance, and a number of relationships are

proposed between the components of resistance and the spatial dynamics of
the pathogen population. For example, the gradient becomes steeper as the
sporulation rate or infectious period increases, but eventually it becomes
independent of both variables. The gradient is little affected by the latent
period. The velocity of spread is linearly dependent on the standard
deviation of the probability function describing spore dispersal.

The spatial spread of a pathogen population has long been
recognized as a central process in plant disease epidemics. Much
effort has been directed toward understanding the factors that
affect dispersal, both from experimental (eg., 8,9,14,15) and
theoretical (1,6,23) points of view, and experiments specifically
designed to study the spatial properties of epidemics are now
common (3,7,10). However, as indicated by Vanderplank (26), the
integration of spatial concepts into temporal disease progress
models has been difficult. Spatial effects have been included in a
few simulation models (24,27), but we lack a coherent theory of
disease spread that can be applied to practical disease control
problems or used to guide research. The relationships between the
disease gradient and the rate of spread, on the one hand, and the
sporulation rate, latent period, and infectious period, on the other,
remain largely unknown.

The examination of these relationships forms the focus of this
paper. Our approach is based upon the work of Mollison (19,20)
and others (5,11,12) on the mathematical theory of population
spread. Our principal tool is a stochastic simulation model, whose
structure reflects, in a simplified way, the main processes involved
in the spread of disease. We use this model as a basis for operational
definitions of the disease gradient and the velocity of spread, and
show how these parameters are related through the apparent
infection rate. With the aid of an analogous deterministic model,
we have also investigated the qualitative effects of sporulation rate,
latent and infectious periods, and spore dispersal on the spatial
properties of epidemics.

THE SIMULATION MODEL

The conceptual structure of the model is straightforward. The
model crop is a single row of identical plants, each of which can
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support a fixed maximum number of lesions. Each lesion, at some
time after initiation, begins to release spores, which may land on the
plant of origin or on some other plant in the row. After a time the
lesion becomes senescent and ceases to produce spores. A spore
that has landed on a plant may or may not produce a lesion there;
the probability of that event depends on how many lesions are
already present.

More detailed assumptions are necessary before the probability
distributions associated with each of these events can be specified.
Our intent has been to provide a broad characterization of the
process of disease spread that can be clearly related to conventional
concepts. We have, therefore, tried to keep our assumptions as
simple as possible.

Three probability distributions are necessary:

The first is the distribution A(n) of the total number (n) of
daughter lesions produced by a parent lesion during its lifetime. In
a constant environment at low population density, n has a Poisson
distribution defined by

h(n) = "¢ /n! )

in which « is the mean number of daughter lesions per parent
lesion.

The second is the distribution z(¢) of the times at which daughter
lesions are produced. A lesion initiated at time ro is considered to
release sporesata constant rate between ro + pand to + p + i; here
p is the latent period and i the infectious period, sensu Vanderplank
(25). The times at which daughter lesions occur will then follow a
uniform distribution:

il fortetp<it<n+p+i
2(1) = 2
O fort<to+port>n+p+i

The third is the distribution f(x) of the distance a spore travels
before landing; this is the spore dispersal function. It is simplest to



assume that as a spore travels through the airspace of a particular
plant, it will land on that plant with probability ‘"’ (which is the
same for all plants), and that spore dispersal is equally likely to
occur in either direction from the source plant. If so, dispersal will
follow a double geometric distribution:

S(x) = [a/(2=a)] (1=a)' *! (3)

in which| x| is the absolute value of the distance (number of plants)
from the plant of origin, and f(x)is the probability thata spore will
travel that distance before landing. This function is symmetrical
about the plant of origin, and decays exponentially towards zero as
the magnitude of x increases.

For realistic behavior at moderate to high population levels,
some form of density dependence must be introduced to the model.
Here we have made the assumption that population growth rate is
modified according to the amount of uncolonized susceptible tissue
remaining. Specifically, we define

2=1-W/K) - 4

in which @ is the probability thata spore, having landed on plant j,
has landed on uncolonized susceptible tissue; y; is the number of
lesions on plantj, and Kis the maximum number of lesions that can
occur on a plant.

The epidemic is begun with a single lesion on the leftmost plant in
the line. As each lesion is initiated, the potential number of
daughters it may eventually produce is chosen by taking a random
sample from the distribution h(n). For each of these daughters a
location is chosen from f(x), and an initiation time from z(¢). Since
environmental effects are not included, all of these distributions
remain constant throughout the simulation. When the simulation
has advanced to the time that a daughter lesion is scheduled to
occur, a new lesion is initiated, with probability Q, at the
appropriate location, The cycle is repeated until disease has spread
throughout the line of plants.

The behavior of the model is governed by a set of five parameters:
a, p, i, a, and K. It will be convenient to express some results in
terms of the auxiliary parameters
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M=ali (5)
and
o’ =2(1-a)/a". (6)

M is the mean number of offspring produced per infectious
lesion per unit time at low population density; it is conceptually
equivalent to the corrected basw infection rate (R.) defined by
Vanderplank (25, page 100). o is the variance of the spore dispersal
function f{x).

SIMULATION RESULTS

Under all conditions, the simulated lesion population was found
to move as a wave of constant average shape and velocity. As
expected, the velocity of this wave, and the steepness of the
population gradient, depended on the values of the simulation
parameters; the nature of the dependence, however, was surprising.
Arguments have been advanced (17,26) to suggest that increasing
the multiplication rate (M) or the infectious period (/) should cause
the gradient to become flatter, but the behavior of the model was
just the opposite (Fig. 1B and C). An increase in the latent period,
which slows the epidemic and, therefore, might be expected to
make the gradient steeper, had little effect (Fig. 1D). Because the
gradient is affected by some components of resistance but not by
others, its usefulness as a measure of resistance (16,17) seems
limited.

When the spore dispersal gradient was made flatter (by
increasing the variance of the spore dispersal function), the disease
gradientalso flattened (Fig. 2). The velocity of spread (measured as
described below) was proportional to o; this was shown by
Mollison (19) for epidemics in which there are no delays or
removals, and we found it continued to hold when such phenomena
were included (Fig. 3).

Toinvestigate these effects in more detail, it is necessary to define
precisely what is meant by the gradient and the velocity of spread.
Until this point we have been treating these as intuitive concepts; we
will now use the simulation results to develop operational
definitions of these terms.
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Fig. 1. Simulated population of lesions (as a percent of maximum) as a function of distance (number of plants) from the point of inoculation, for various times

(T)afterinoculation. Simulation parametersare: A, M =0.5,p=3,i=5B,M=10,p=3,i=

all cases o0 = 2, K = 50.

5C,M=05p=3i=10;D,M=05p=7,i=5.1n
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MEASUREMENT OF SPORE DISPERSAL GRADIENT
AND VELOCITY OF SPREAD

The most widely used measures of gradient steepness are those
first proposed by Gregory (7) and by Kiyosawa and Shiyomi (13).
Gregory’s parameter was derived for use with primary disease
gradients, although it has often been applied to secondary gradients
(3,17). Both measures do not allow for the nonlinear saturation
phenomena that begin to appear when disease severity exceeds
10-20%, thus are applicable only at low disease levels. Attempts to
apply either measure at disease severities above this level may
produce misleading conclusions about the behavior of the disease
gradient.

A more generally useful gradient parameter can be derived from
the following considerations. Under constant conditions, the
pathogen population moves as a stable wave at constant velocity.
Moving at a velocity v for a time period At, the wave travels a
distance As:

As = vAt (7

Let y(so.r) be the lesion population at location so at time ¢.
Because the velocity is constant and the shape of the wave is stable,

yiso + vAr, t + At) = p(sot),
or, if s = 50 + vAy,

pis, 1+ Ar)y = y(s — vAL 1), (8)

By substituting equations 7 and 8 in the standard definition of the
partial derivative, we get
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Fig. 2. Simulated population of lesions (as percent of maximum) as a
function of distance from the point of inoculation, for various values of a.
Other parameters are the same as Fig. | A. Time of observation is T'= 60.
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Fig. 3. Velocity of spread of the simulated epidemics as a function of o.
Other parameters are the same as Fig. 1A,
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ay(s.)/ 0t = —vOy(s.1)/Os. (9)

That is, the shape of y plotted against s is the same as the shape of
yagainst 7, except for the scale factor v. In the simulated epidemics,
y increases approximately logistically with time (Fig. 4); if r is the
local apparent infection rate (measured at location s, not over the
whole plot), then

dy[0s = —(r/v)y(1—p). (10)

We can expect, therefore, that the logit of y plotted against s
should be a straight line of slope —r/v. This is the case for the
simulated epidemics (Fig. 5), except near the ends of the plot where
loss of spores results in a reduction of the local apparent infection
rate.
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Fig. 4. Logit of simulated lesion population as a function of time since
inoculation, at various distances (S) from the point of inoculation. Lines are
the least squares regression of the logit on time, fitted with a common slope.
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Fig. 5. Logit of simulated lesion population as a function of distance from

the point of inoculation, for various times after (7) inoculation. Lines are

the least squares regression of the logit on distance, fitted with a common
slope.



We can use the relationship implied by equation 10 to define the
gradient parameter

g=rlv (1

which is dimensioned per unit length (eg, m™'). This ratio is the
amount by which the logit of disease severity falls in a unit distance.
At low disease levels, g is equivalent to Kiyosawa and Shiyomi’s b
(13), but it remains applicable even at higher levels. The utility of
the measure lies partly in this wider range of applicability, and
partly in the simple and direct relationship it provides between the
gradient, the velocity of spread, and the apparent infection rate. Its
use depends, of course, on the adequacy of the logistic equation as a
summary of the spatial and temporal characteristics of the
epidemic. The results of field experiments to test its adequacy for
modeling potato late blight are reported in another paper (18).

The parameters in equation 11 are defined operationally as least
squares regression slopes: r is estimated by regressing logit (y) on
time since inoculation, and g by regressing logit (y) on distance
from the focal center. In practice, estimates are made with severity
measurements pooled (4) for several locations (for r) or several
times (for g). The regression on distance also provides estimates of
550, the distance at which y falls to 50%; v is estimated by regressing
$s0 on time.

It should be pointed out that the definition of g in terms of the
logistic function is largely a matter of convenience. In other
circumstances, it may be appropriate to define g in terms of some
other growth function. For example, one could set g = k/v, in
which k is the rate parameter of the Gompertz function (2), or g =

1/ vb, in which b is the scale parameter of the Weibull function (22).
We have not investigated the conditions under which such
definitions may prove useful.

DETERMINANTS OF SPATIAL BEHAVIOR

We have characterized the spatial behavior of an epidemic by the
population parameters r, v, and g, but these parameters are
ultimately determined by the processes of spore production and
dispersal that occur at the individual level. We have discussed
briefly the effects of M, p, i, and ¢ on the qualitative behavior of
simulated epidemics; however, simulation of many combinations

TABLE I. Velocity measured by simulation (v,,) and predicted by equation
15 (v,)'

M o

P i Vin Vp
0.5 2.00 3 5 0.506 0.616
1.0 2.00 3 5 0.887 0.922
0.5 2.00 5 5 0.439 0.441
0.5 2.00 7 5 0.330 0.344
0.5 2.00 10 5 0.175 0.260
0.5 2.00 3 10 0.562 0.696
0.5 0.79 3 5 0.215 0.253
0.5 2.74 3 5 0.570 0.841
0.5 394 3 5 1.074 1.208

* Abbreviations: M is the multiplication rate, o is the standard deviation of
the spore dispersal function, and p and i are the latent and infectious
periods, respectively.
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Fig. 6. Qualitative relationships predicted by equations 11 and 15 between population-level parameters (r, v, g)and individual-level parameters (M, p. i, 0)

that determine spatial behavior.
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of values of these parameters is expensive. Therefore, we have used
an analogous deterministic model to help summarize these effects.

The model is a simple extension of Vanderplank’s (25, equation
8.3) general epidemic model

dy()/dt = R[l=y()] [yt —p)—yt—p—0D] (12)

R.is the corrected basic infection rate (equivalent to our M), y(r)
is the proportion of disease at time 7, and p and i are the latent and
infectious periods, respectively. To convert this to a spatial model it
is only necessary to replace the term [y(r — p) — y(t —p — i)],
which is the proportion of infectious lesions, with a weighted
average of the infectious lesions around the location s. Lesions at
location (s — x) exert an influence on the rate of infection at s
through spore dispersal; in determining this rate of infection it is
therefore appropriate to weight the amount of disease at (s — x) by
the probability that a spore will travel the distance x, which is given
by the spore dispersal function f(x). The spatial version of the
model is obtained by summing over all values of x:

dy(s, 1)/dt =
M[1=p(s:0)] E5-we [¥(s — X, t —p) — s —x, t —p—i)], (13)

Although explicit solution of this equation does not appear to be
possible, some useful insight can be gained by considering the
results of the previous section. It was shown that the behavior of the
simulation model can be described in space and time by the logistic
function. At low disease levels (near the leading edge of the
advancing wave), the logistic function reduces to the exponential:

y(sit) = y(0,0)e™e" (14)

with g and r defined as before. Substitution of equation 14 into
equation 13 (again assuming low disease levels, so that the term
[1—=y(s,r)] can be dropped) shows that it is a solution of equation
13, with the following relationship among the parameters:

My(g) = rer/(1—€e™") (15)

Yi(g) is the moment generating function of the distribution f(x),
evaluated at g. Such functions are extensively tabulated for a wide
variety of distributions (eg, 21).

Equation 15, in slightly rearranged form, is Vanderplank’s (25)
equation 8.5, modified to include spatial effects. It provides, in
effect, an hypothesis about the relationships we can expect to find
between the descriptors of individual behavior (M, p, i, and ¢)and
the descriptors of population behavior (r and g). The equation has
been derived for low population levels, but clearly all of the
parameters involved remain constant as long as the population
continues to behave logistically; this is true because r and g are
defined in terms of the logistic equation, and we have not changed
their definitions in assuming low population levels. The equation is
therefore useful over the entire range of conditions for which the
logit plots can be considered straight.

The qualitative relationships predicted by equation 15 are shown
diagrammatically in Fig. 6. This equation does not fix the values of
rand g:todo so has required the ad hoc assumption that,amongall
the values of r and g satisfying equation 15, the realized values will
be those that minimize the velocity of spread, as calculated by
equation 11. This is suggested by the results of similar models
(12,19), and is justified by the fact that simulated epidemics seem to
propagate at or slightly below this minimum velocity (Table 1).

The hypotheses generated from the results of the simulation
model are elaborated in Fig. 6; v is linearly related to o, g increases
with increasing M or i and is nearly unaffected by p. Itis also clear
that g rapidly becomes independent of M and i as these parameters
increase, indicating again that g is not a measure of resistance. The
parameters r and v, which can be seen as complementary measures
of the rate of epidemic progress, differ only in their response to a.
The lack of response of r to o suggests that spatial factors may be
less important than expected under some conditions. (It is
important to reemphasize that r refers to the apparent infection rate
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measured at a specific location s within the plot, not to the infection
rate for the plot as a whole).

DISCUSSION

This research has generated two sets of hypotheses about
behavior of a spreading pathogen population, derived from the
stochastic and deterministic models described above.

i) Under constant conditions, the population is expected to
spread as a wave at constant velocity. The properties of this wave
can be described in terms of the logistic function, which permits
useful definitions of the gradient and velocity parameters. These
parameters are related to the apparent infection rate by equation
Il:g=r/v.

ii) Qualitatively, the relationships between individual-and
population-level parameters are described by equation 15 and Fig.
6.

Field experiments to test these hypotheses are reported in
another paper (18). Because of the simplified nature of our models,
we cannot make testable quantitative predictions; our approach is
instead to verify the utility of the population parameters we have
defined, and to show that they are related according to equation 11.
We have also manipulated parameters by the use of fungicides and
resistant cultivars, to investigate some features of Fig. 6.

We believe the concepts developed in this paper should provide a
useful framework for the experimental investigation of the spread
of plant disease. Equations |1 and 15 embody a unified view of the
spatial and temporal development of epidemics, and provide a
logical basis for the design of experiments. Although the derivation
of equation 15 cannot be considered mathematically rigorous, the
equation has proven to be a fertile source of hypotheses, and an
investigation of its properties provide an illuminating excursion
through the modes of behavior that might be expected of a
spreading pathogen population. Besides the variety of predictions
diagrammed in Fig. 6, the equation can be readily extended to
cover asymmetric spore dispersal functions (in which case the
solution yields two gradients and two velocities, corresponding to
*“upwind”and “downwind” spread), more realistic patterns of spore
production (which do not involve constant sporulation rates and
fixed latent and infectious periods), and spread through two
dimensions. This last case is of particular interest since it is not clear
to what extent our one-dimensional results can be applied to spread
over a plane. A major difficulty is encountered in adequately
generalizing the parametric description of the gradient from one to
two dimensions. Much more theoretical and experimental work
needs to be done to clarify questions such as these.

The wavelike behavior apparent in Fig. 1 provides the basis for
most of the concepts discussed in this paper. For such a wave to be
discernible, the scale of observation must be large enough to take in
a large part of the wave. On a fine scale, especially at the leading
edge of the advancing wave, stochastic effects predominate: spread
of the pathogen is more usefully viewed as a series of discontinuous
jumps, followed by focal formation and secondary spread, thanasa
smoothly propagating wave. In principle, such behavior can be
investigated using the stochastic model we have presented; in
practice, such investigations are of limited usefulness in the absence
of appropriate unifying concepts. We see the development of such
concepts as a priority for future research.
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