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ABSTRACT

Dianese, J. C., and Schaad, N. W. 1982, Isolation and characterization of inner and outer membranes of Xanthomonas campestris pv. campestris.

Phytopathology 72:1284-1289.

Cellenvelopes of Xanthomonas campestris pv. campesiris were extracted
by conventional methods and characterized. The total membrane fraction
was resolved into a light (L), intermediate (M), and two heavy (H; and H:)
fractions by 45-709 sucrose step density gradient centrifugation. The L
fraction contained 67% of the succinate dehydrogenase (SDH) activity,
whereas the H, and H: fractions contained 699 of the 2-keto-
deoxyoctonate (KDO). Most remaining SDH (18%) and KDO (25%) was in
the M fraction. Xanthomonadin, a brominated arylopolyene pigment, was
located exclusively in fractions H, and H». Based on these data, fractions L
and H, plus Hz were considered to be primarily compounds from the inner
and outer membranes, respectively. The relative phospholipid content of

the inner membrane was considerably higher than that of the outer
membrane. Six phospholipids were identified; the bulk (about 20% each) of
these were lysophosphatidylethanolamine, phosphatidylethanolamine, and
phosphatidylserine. Electron micrographs showed the inner membrane to
consist of circular unit membranes much smaller than the larger elongated
structures of the outer membrane. Approximately 30 polypeptides in the
total membrane fraction were resolved by sodium dodecyl sulfate-
polyacrylamide gel electrophoresis. Three major polypeptides (44, 26, and
23 kilodaltons) were resolved in the outer membrane fraction. The possible
importance of membrane proteins in the pathogenicity of X. campestris is
discussed.

The cell envelope of Gram-negative bacteria consists of an inner
cytoplasmic membrane and an outer membrane composed of a
layer of peptidoglycan between the two distinct membranes (4).
Both membranes contain phospholipids and proteins. The inner
membrane contains several specific enzymes, whereas the outer
membrane contains lipopolysaccharide (LPS) and several major
proteins such as porins and lipoproteins (13,36). Much information
is available on membranes of members of the Enterobacteraceae
and organisms of medical importance (3,12,14,27-29,35,39), but
little is known about the membranes of plant pathogenic bacteria.

Shukla and Turner (44) isolated and characterized inner and
outer membranes of Erwinia carotovora, a soft rotting member of
the Enterobacteraceae. The membranes obtained by sonic
disruption of spheroplasts produced by a lysozyme/ EDTA
treatment were characterized by using 2-keto-deoxyoctonate
(KDO) content and succinate dehydrogenase (SDH) activity of the
two resulting density gradient fractions. Total membrane proteins
of Xanthomonas sinensis have been analyzed by SDS-PAGE (40),
but no attempt was made to separate inner and outer membranes.

Lipopolysaccharides of Gram-negative plant pathogenic
bacteria have been implicated as the site of molecular interaction
with cell walls or membranes of host plants (9,22-24,30,43,50). A
better knowledge of the components of the bacterial cell envelope
might contribute to a better understanding of such molecular
interactions,

Xanthomonas campestris pv. campestris (called X. campestrisin
this article), a member of the Pseudomonadaceae, is the causal
agent of black rot of crucifers and is the most destructive pathogen
of crucifers worldwide (53). Furthermore, this organism is of major
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importance to food processing, textile, and oil well drilling
industries because it produces xanthan gum, an extracellular
polysaccharide (51). We are interested in the possibility that cell
envelope components might be involved in limiting the
pathogenicity of X. campestris to plants in the family Cruciferae.
To pursue this, it was necessary to isolate and separate the
component membrane fractions.

In this paper, we describe a procedure for separating the
cytoplasmic and outer membrane of X. campestris. Data are
presented on some of the chemical components, selected enzyme
activities, and polypeptide composition.

MATERIALS AND METHODS

Bacterial growth and envelope isolation. X. campestris strain
B-24 (obtained originally from L. M. Moore in Oregonin 1971) was
maintained by weekly transfers on slants of YDC medium (54).
Cultures were stored on YDC slants at 2 C with transfers every 2-3
mo. A seed culture of the bacterium was grown in liquid medium
523 (16) on a rotary platform shaker at 30 C. After 15 hr, 15 ml of
seed culture were added to 1.5 L of 523 medium in 2.8-L Fernbach
flasks. The flasks were shaken at 50—60 rpm on a New Brunswick
(model G-25) rotary shaker at 30 C for 20-24 hr.

Bacterial cells were harvested during mid-logarithmic growth
(100150 Klett units) by centrifugation at 16,300 g for 10 minat4 C,
washed once with 10 mM tris (tris[hydroxymethylamino-
methane])-HCI buffer pH 7.4 (tris buffer), and resuspended in the
same buffer (100 ml per 10-15 g of cells). DN Ase (Sigma Chemical
Co., St. Louis, MO 63178) and RN Ase (Worthington Biochemical
Corp., Worthington, OH 43085) at 14 and 15 units per milliliter,
respectively, were added and the cell suspension was stirred for 30
min at 4 C. The cells were broken by a single passage through a
chilled French pressure cell (American Instrument Co., Silver
Spring, MD 20910) at 124 to 138 MPa (18,000 to 20,000 psi). The
lysate was centrifuged at 3,000 g for 10 min, and the pellet



containing unbroken cells was discarded. Total cell envelopes were
obtained from the supernatant fluid by centrifugation at 190,000 g
for 90 min in a Type 42.1 Beckman rotor. The resulting cell
envelopes were washed once, suspended in 2-4 ml of tris buffer, and
stored in 15-20 ml vials at —20 C or used fresh.

Sucrose density gradient centrifugation. Total cell envelopes
were layered on a step density gradient similar to that of Hancock
and Nikaido (11), but with the following sucrose composition in tris
buffer (w/w): 5 ml of 45%, 8 ml of 52%, 9 ml of 58%, 10 ml of 64%,
and 3 ml of 70%. Total envelopes (0.5—1.0 ml) containing 12—-15 mg
of protein per milliliter were layered onto each of six gradients and
centrifuged at 120,000 g ina Beckman SW 27 rotor for 18 hrat4 C.
The gradients were fractionated by usingan ISCO (Instrumentation
Specialties Co., Lincoln, NE 68504) gradient fractionatorand UA-
5 automatic peak separator and an ISCO model 568 fraction
collector. Each membrane fraction was isolated by pooling
fractions under each peak, dialyzingat4 C for 15-18 hragainst3 L
of tris buffer (with 3 changes), and centrifugation at 190,000 g for 90
min. The membrane pellets were washed once and suspended in 1-2
ml tris buffer overnight on a platform shaker at 4 C. Preparations
were stored at —20 C or used fresh. Only unfrozen material was
used for enzyme assays.

Densities of fractions were estimated by measuring the sucrose
concentration witha Bausch & Lomb refractometerat 20 C from |
ml gradient fractions.

Chemical and enzyme assays. Protein was analyzed by following
the procedures of Lowry etal (25). The KDO content was estimated
by the thiobarbituric acid method (49). The final chromogen was
extracted with an equal volume of butanol containing 5% HCI, and
differences in absorbance at 552 and 508 nm were recorded; the
amount of KDO was determined by using a micromolar extinction
coefficient of 19 (19).

Phospholipids were extracted by following the procedures of
Folch et al (7). The chloroform-methanol (2:1, v/v) extract was
evaporated under minimum light, and the lipid fraction was
dissolved in chloroform. These samples were stored at =20 C under
nitrogen. Xanthomonadins (47) were estimated by the absorbance
at 453 nm of the lipid extract in chloroform (1) using a molar
extinction coefficient of 131,500 (1). Phospholipid species were
identified by thin-layer chromatography (20) with 0.5 mm silica gel
G plates treated with 0.15 M (NH4):SOs and activated for | hr at
110 C. Plates were cooled to room temperature in a dessicator.
Chromatography was performed in paper-lined saturated
chambers using acetone:benzene:H,O (91:30:8, v/v) solvent. The
phospholipid species were located by ultraviolet light after the
plates were sprayed with a fluorescent mixture (15). Spots were
eluted with chloroform-methanol and phosphate was determined
(31).

Nicotanamide adenine dinucleotide (NADH) oxidase was
measured as described (34) in reaction mixtures containing 50mM
tris-HCl, pH 7.5,0.12 mM NADH (Sigma), 0.2 mM dithiothreitol
(Sigma), and 150 ug of freshly prepared envelope protein. Decrease
in absorbance at 340 nm was measured for 20 min at 30 C.
Succinate dehydrogenase (SDH) was assayed according to
Kasahara and Anraku (18) in reaction mixtures (3 ml) containing
50 mM tris-HCI, pH 8.0,4 mM KCN, 0.04 mM 2.6 dichlorophenol-
indophenol (DCPIP) (Sigma), 0.2 mM phenazine methosulfate
(Sigma), 30 mM potassium succinate (United States Biochemical
Corporation, Cleveland, OH 44128), and 100-200 ug of cell
envelope protein. Decrease in absorbance at 600 nm was measured
for 10 min at 30 C. Mannanase activity was measured as specified
by Dekker and Candy (4) on | ml of reaction mixture containing
0.5% galactomannan polymer (Sigma) and | mg membrane protein
in tris buffer. The mixture was incubated for 30 min at 30 C before
reducing sugars were measured by the copper/arsenomolybdate
method (33). All absorbance readings were determined with a
Gilford model 220 photometer and Beckman DU monochromator
attached to a Heathkit EU-205-11 recorder.

Electron microscopy. Samples for negative staining were
deposited on Parlodion (Parlodion, St. Louis, MO 63147)-coated
grids and stained with 2% aqueous uranyl acetate for 2 min.
Samples for sectioning were centrifuged at 195,000 g for 1 hr in

Spinco type 40 polycarbonate centrifuge tubes. The pelleted
membranes were fixed in 4% glutaraldehyde for 15 hr, washed,
postfixed in 2% osmium tetroxide, and embedded in Spurr’s
medium (46). Thin sections (silver to gold) were stained in 2%
aqueous uranyl acetate and 1% lead citrate, and viewed under a
Phillips model 200 electron microscope operated at 80 kV.

SDS-polyacrylamide gel electrophoresis (SDS-PAGE). SDS-
PAGE was performed in vertical slab gels of 10% acrylamide on a
Bio-Rad model 221 electrophoresis apparatus with the
discontinuous system of Laemmli (21). Samples were solubilized in
Laemmli sample buffer (21) at 100 C for 3 min. Ten to 20 ul of
sample containing 400 ug of protein per milliliter was applied to
each sample well and electrophoresis was performed at 15 C witha
constant current of 12.5 ma regulated by an ISCO model 1420
power supply. Molecular weights were determined by using a Bio-
Rad low-molecular-weight standard protein solution (48).

RESULTS

Isolation of membrane fractions. Sucrose density gradient
centrifugation of cell envelopes resulted in four distinct peaks (Fig.
1). Buoyant densities of the light (L), intermediate (M), heavy |
(H,),and heavy 2 (H:) fractions were 1.143,1.163, 1.186,and 1.193
g/cm’, respectively.

Chemical composition of the isolated membrane fractions. The
chemical composition of membrane fractions is shown in Table 1.
Nearly half of the protein recovered from the gradient fractions was
presentinfraction Hy; the remaining protein was evenly distributed
between the other fractions. However, the highest concentration of
protein per milligram (dry weight) of membrane was in fraction L,
which proved to be the cytoplasmic membrane (see below).
Xanthomonadin was present only in fractions H, and Ha.
Fractions M, Hy, and H; were enriched in KDO, whereas fractions
L and M were greatly enriched in phospholipids. Six
phospholipids, including cardiolipin (CL), lysophosphat-
idylethanolamine (LPE), phosphatidylethanolamine (PE),
phosphatidylglycerol (PG), phosphatidylinositol (P1), and
phosphatidylserine (PS) were tentatively identified in each of the
fractions with LPE, PI, and PS predominating (Table 2).

Enzyme activities associated with the isolated membrane
fractions. The distribution of enzyme activities in the isolated
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Fig. 1. Separation of membranes of Xanthomonas campestris B-24 on
52-70% step sucrose density gradients. Gradients were centrifuged at
120,000 g for 18 hrat 4 C.
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membrane fractions is shown in Table 3. Fractions L and M
together contained 85, 72, and 65% of SDH, NADH oxidase, and
B-mannanase activity (per milligram dry weight membrane),
respectively. Fraction L contained 67% of the SDH activity (per
milligram [dry weight] of membrane), whereas fraction H;
contained only 3%.

Electron microscopy. Negative staining revealed membrane
structures in each of the four gradient band samples. Those in band
Land M were circular, approximately 30-50 nm in diameter and of
uniform size, whereas those in band H: were mostly elongate,
approximately 150 nm wide and 220-500 nm long (Fig. 2A-C).
There was little difference between structures in H; and H; except
that those in H: appeared slightly larger. Sectioned material from
band H: showed uniform-shaped bilaminar unit membrane
structures (Fig. 2D).

SDS-polyacrylamide gel electrophoresis. Polypeptide profiles of
membrane fraction L were significantly different from fractions H,
and H, (Figs. 3 and 4). Fraction L contained several minor
polypeptides, but no major ones (Fig. 3, lane 1). On the other hand,
fractions H, and H:, which were undistinguishable, contained
major polypeptides of 44, 26, and 23 kilodalton (kdal) with the 44
kdalton polypeptide predominating (Fig. 3, lanes 3 and 4, and Fig.
4). Profiles of H, and H: fractions contained more minor
polypeptides than did the L fraction. Fraction M contained the
three major polypeptides observed in fraction H, and H: but in
smaller amounts (Fig. 3, lane 2).

DISCUSSION

We have described a procedure useful for characterizing the
membranes of X. campestris, a Gram-negative plant pathogenic

bacterium. At first we employed the EDTA-lysozyme methods
used to prepare membranes of E. coli (29) and S. typhimurium (35).
However, inner and outer membranes of X. campestris failed to
separate adequately by either method. Our results are in agreement
with the failure of the EDTA-lysozyme method to separate
membranes of Pseudomonas aeruginosa (11) and Selenomonas
ruminatium (17). Sucrose step density centrifugation of envelopes
of X. campestris from French pressure cell extracts results in four
fractions. From determinations of chemical composition and
enzyme activities, we found that the L fraction and the heaviest
fraction (H2) were enriched in cytoplasmic and outer membranes,
respectively. The H; band contains a relatively small amount of
enzyme activity (9%) and a relatively large amount of KDO (44%),
whereas the L band contains a relatively small amount of KDO
(8%) and a relatively large amount of enzyme activity (54%). The M
and H, bands contain a moderate amount of enzyme activity (21
and 17%, respectively) and outer-membrane-specific KDO (23 and
25%, respectively), suggesting a mixture of cytoplasmic and outer
membrane.

The appearance of two sucrose density gradient fractions
enriched in outer membrane has been reported for the closely
related P. aeruginosa(11) when similar extraction procedures were
used. However, fraction H; of X. campestris is less enriched in
outer membrane than fraction H,. Whether this difference is due to
the extraction procedure (such as 124—138 MPa [18,000-20,000 psi]
versus 103 MPa [15,000 psi]for cell breakage) or to the structure of
the outer membrane of X. campestris is unknown. The difference
between the H; and H: fractions may be a result of differential
amounts of KDO and xanthomonadin, a yellow brominated
arylopolyene pigment produced only by xanthomonads (47). The

TABLE I. Chemical composition of isolated membrane envelope fractions of Xanthomonas campestris B-24

Buoyant Recovery of

: : Composition
densn}r protein
Fraction (g/cm’) (% total)* Protein® Phospholipids® Xanthomonadin® KDO*
Total membrane 276 55 0.38 2.20
Light (L) 1.143 13.9 574 145 0.00 0.68
Intermediate (M) 1.163 17.5 34 106 0.00 2.26
Heavy 1 (Hy) 1.186 49.9 284 38 0.78 2.04
Heavy 2 (H2) 1.193 18.7 408 29 0.51 3.98
*Represents distribution of protein within the sucrose density gradient fractions.
"Micrograms per milligram (dry weight) of membrane.
“Nanomoles of xanthomonadin or 2-keto-3-deoxyoctonate (KDO) per milligram of protein.
TABLE 2. Amounts and distribution of phospholipids identified in membrane envelope fractions of Xanthomonas campestris B-24
Phospholipids (ug/ml of membrane)”
Fraction" €L LPE PE PG PI PS U
™ 3.2 11.3 32 8.1 8.1 12.9 8.1
L 8.1 24.1 16.1 16.1 36.3 28.1 16.2
M 4.8 329 12.8 12.9 32,6 31.0 16.2
H, 1.6 1.0 3.2 23 10.0 7.3 2.7
H, 0.8 6.7 29 34 9.4 50 34

* Abbreviations (fractions): TM, total membrane; L, light; M, intermediate, and H, heavy.
®Abbreviations (phospholipids): CL, cardiolipin; LPE, lysophosphatidylethanolamine; PE, phosphatidylethanolamine; PG, phosphatidylglycerol; PI,

phosphatidylinositol; PS, phosphatidylserine; and U, unknown.
“The distribution of total phospholipid is shown in Table I.

TABLE 3. Enzyme activities of isolated membrane fractions of Xanthomonas campestris B-24

Specific activity®

Enzyme Total membrane Light (L) Intermediate (M) Heavy 1 (H) Heavy 2 (Ha)
Succinate dehydrogenase 5.0 34.1(59.4) 5.0 (15.9) 3.0 (10.6) 1.0 (2.5)
NADH oxidase 7.4 15.0 (26.1) 7.4 (23.6) 4.1(14.4) 2.1(5.1)
fA-mannanase 3.5 25.7 (44.8) 3.7(11.8) 4.6 (16.2) 5.8(14.2)

"Specific activities are expressed in micromoles substrate oxidized per minute per milligram of protein. Numbers in parenthesis are specific activities per
milligram (dry weight) of membrane (based on 574, 314, 284, and 408 ug of protein per milligram [dry weight] of membrane of fractions L, M. H, and H3,

respectively).
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absence of xanthomonadin in the KDO containing M fraction
suggests that the pigment is located in a layer of the outer
membrane that is different from that where LPS is located. This
suggests that the inner and outer membranes of X. campestris
separate by layers. Our results establish that xanthomonadin is
limited and exclusive to the outer membrane. Because the pigment
is easy to measure, it may be used as an excellent outer membrane
marker for yellow-pigmented xanthomonads.

Because only one solvent system was employed, our
identification of six classes of phospholipids is not definitive. In
fact, the presence of an unidentified phospholipid that is 1 1% of the
total suggests incomplete identification. Furthermore, the
relatively high level of LPE in membranes of X. campestris suggests
that PE might have been hydrolyzed by degradative enzymes
during the assay procedure (2). PE has been identified as a major
phospholipid in inner and outer membranes of Acinetobacter (42),
E. coli (52), Proteus mirabilis (8,38), S. typhimurium (35), and in
whole cell extracts of Neisseria gonorrhoeae (10). A larger amount
of each phospholipid in the inner membrane of X. campestris
agrees with data which indicate that inner-membrane-bound
enzymes are responsible for the synthesis of bacterial
phospholipids (2).

SDS-PAGE profiles of SDS- and heat-solubilized membrane
proteins of X. campestris differ from profiles of most other bacteria
that have been studied. Most of those studied, including S.
typhimurium (35), E. coli (39,41), 8. ruminantium (17),
Pseudomonas aeruginosa (11,28), and Rhodospirillum rubrum (3)
contain considerably more polypeptides in the inner membrane
than in the outer membrane. However, such is not true for X.
campestris. The reason for this could be due to the relatively slow
growth of the plant pathogen in liquid medium, solubility of the
polypeptides of the inner membrane, or loss of inner membrane
polypeptides. Perhaps, since the organism is a pathogen specific to
plants of a single family (Cruciferae), fewer enzymes are needed. In
addition, the nutritional range of X. campestris is quite limited (6)

Fig. 2. Electron micrographs of fragments of membranes of Xanthomonas
campestris B-24 from sucrose density gradient centrifugation bands.
Negatively stained samples of A, L; B, M; and C, H»; and D, sectioned
material from Haz. Scale bars for A, B, and C = 0.43 um. Scale bar for D=
0.25 um.

whereas that of P. aeruginosa, a closely related organism, is very
diverse (37).

The profile of the major outer membrane polypeptides of X.
campestris is very similar to that of P. aeruginosa. Both organisms
contain three major polypeptides when compared under similar
conditions (11). The 44, 26, and 23 kdaltons polypeptides of X.
campestris are each approximately 5 kdaltons higher than the three
major polypeptides of P. aeruginosa(11). Perhaps such a pattern of
major outer membrane polypeptides is unique to the
Pseudomonadaceae. A major similarity between the profiles of X.
campestris and many other Gram-negative bacteria is the presence
of a 44 kdaltons heat-modifiable (26) major polypeptide similar to
the OmpA polypeptide (5,13,32) of other Gram-negative bacteria.

Just as cell envelope components of animal pathogens have a
major role in determining pathogenicity (45), cell envelope
components of plant pathogenic bacteria may also play a role. A

1 2 3 4 5

Fig. 3. Coomassie brilliant blue-stained SDS-polyacrylamide gel
electrophoresis profile of membrane fractions of Xanthomonas campestris
B-24, The fractions were prepared as described in Materials and Methods.
Electrophoresis was performed in vertical slab gels of 10% polyacrylamide
with the discontinuous system of Laemmli (27). Each fraction preparation
was solubilized in Laemmli sample buffer at 100 C for 3 min. Samples were
sucrose density gradient centrifugation fractions: 1, light; 2, intermediate; 3,
heavy (H); and 4, heavy (H:); and 5, total membrane. Numbers on the left
(marked by arrows) are molecular weights (X10%). Eight micrograms of
protein were applied to each lane. Major polypeptides are noted by arrows
on the right.
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Fig. 4. Scans of SDS-polyacrylamide gels shown in Fig. 3. Scans are of
sucrose density gradient fractions: 1, light; 2, intermediate; 3, heavy (Hz);
and 4, total membrane. Major polypeptides of outer membrane are noted
by arrows. Gels were scanned at 520 nm by using a photovolt densitometer.

better understanding of the biochemistry and structure of bacterial
membranes is certainly needed before fruitful advances can be
made toward understanding the interactions between plant
pathogenic bacteria and plant hosts at the molecular level. The
methods we have described can be successfully used to fractionate
the cell envelope of X. campestris B-24 into four fractions. Fraction
H,, representing almost-pure outer membrane, will be useful in our
planned studies on the role of outer membrane proteins in
pathogenesis.
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