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MacKenzie (4, page 12, column 2, paragraph 6) makes the claim
that if we know the apparent infection rates, rgand r g, of any two
pathogenic strains, Sand R, respectively, then the relative parasitic
fitness of the less fit strain, say S, is

W=exp(rg—rp) (1)

I think this claim is incorrect. Since this error was overlooked in
recent comments by Groth and Barrett (2) and Skylakakis (6) and
repeated by MacKenzie (5), discussion is warranted.

The apparent infection rate, r, originally was defined by
Vanderplank (7, pages 20 and 21) in the context of the logistic
equation. This equation describes the rate of change of disease
intensity with time as

dx/di=rx(l-x), 0s<x<1 (2)

in which x is the intensity of disease at time 1.
Integrating and rearranging Eq. 2 produces an expression for the
apparent infection rate (cf 8, page 127):

,-=_I n X0 x(0) (3)
t 1 — x(1) 1= x(0)

in which In stands for the natural logarithm. Here the time-
dependence of disease intensity is expressed explicitly: x(¢) being
the disease intensity at time ¢ and x(0) being the initial (¢ = 0)
disease intensity. Eq. 3 appears as the second equation on page 12
of MacKenzie’s letter (4).

Since the definition of apparent infection rate, Eq. 3, is derived
from the logistic growth model, Eq. 2, apparent infection rates are
meaningful only when this model is used to describe disease
progress.

In contrast, relative parasitic fitness, W, as defined by
MacKenzie (4) on page 10 of his letter, is meaningful only when the
exponential growth model is used to describe disease progress.
With exponential growth the rate of change of disease intensity
with time is:

dx/dt= mx 4

in which m is the exponential or Malthusian growth rate. It is
equivalent to Vanderplank’s (6, page 20) logarithmic growth rate.

Vanderplank (6) correctly points out that when x is small, Eq. 4
provides a good approximation to Eq. 2, and under these
circumstances m provides a reasonable “estimate” of r. But we are
not concerned with “estimates” here. Rather, judging the validity of
Eq. | requires mathematical rigor and precise definitions. Hence,
we will consistently distinguish between apparent infection rates, r,
and exponential growth rates, m, even at small x, because these
rates are defined in terms of models that differ in both the biological
processes they represent and their resulting mathematical
The publication costs of this article were defrayed in part by page charge payment. This

article must therefore be hereby marked “advertisement” in accordance with 18 U.5.C. §
1734 solely to indicate this fact.

0031-949X/81/07066502/$3.00/0
@The American Phytopathological Society

structures. The usefulness of this approach will become apparent.
Integrating and rearranging Eq. 4:

x(1) = x(0)exp(mt).

Hence, if any two asexual pathogenic strains, Sand R,are growing
exponentially, the disease intensity due to each strain at time ¢/,
respectively, is

o xg(t) = xg(0)exp(mgt), )

x (1) = x p(0)exp(m pi).

Therefore, the amount of strain S present at time ¢ relative to the
amount of strain R is

x5(0)  xg(0)
xXplt) xp(0)

This equation would be identical to Eq. | of Skylakakis (6) if he had
not used the apparent infection rates rg and rp instead of the
exponential growth rates mg and mp. If g(1) is the fraction of
disease intensity contributed by strain § at time ¢, and 1 — g(1) is
the fraction due to strain R, then this equation can also be
written

exp [(mg— mpl]

90 _ 90 ., (6)
1—gq(z) 1—q(0)

in which ¢(0) is the initial proportion of strain S and the relative
parasitic fitness is

W =exp(mg— mp). (7

Combining Egs. 6 and 7, taking logarithms of both sides, and
rearranging, results in:

mp=L 11 L, () (8)
t 1= q(1) 1= 4(0)

in which m = m¢—m g. Eq. 8 corresponds to the first equation on
page 12 of MacKenzie's (4) letter.

MacKenzie (4,5) points out the similarity in structure of Eqgs. 3
and 8 but seems to have overlooked the differences in their
derivations. Eq. 3 applies to logistic models of disease progress
while Eq. 8 applies to exponential models of disease progress. A
comparison of Eqs. 2 and 4 illustrates the difference between
logistic and exponential growth models, respectively. The logistic,
Eq. 2, has an additional factor, 1—x, which accounts for the
limitations to exponential growth when host density is finite.
Equation | relates the relative parasitic fitness, a parameter of
exponential growth models, to the difference in apparent infection
rates that are parameters of logistic growth models. Since it is
strictly impossible for disease intensity to grow according to
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both exponential and logistic models at the same time, Eq. 1 is
mathematically incorrect. It should be replaced by Eq. 7. At best,
Eq. 1 can be regarded asan approximation to Eq. 7 when x is small.

Expressions for the exponential growth rates required in Eq. 7
can be found by integrating and rearranging Eq. 5:

ms=?l Izn xg(#) = In xS(O;:I

and 9)

mR=;£ Ean(I)—lan((EI.

Itfollows from Eq. 9 that the logarithmic transformation, not the
logit transformation as suggested by MacKenzie (4,5), should be
used in determining relative parasitic fitness from disease intensity
data. If the disease is increasing logistically neither Eq. I nor Eq. 7 is
appropriate.

Therefore, 1 suggest that paragraph 6 on page 12, column 2, of
MacKenzie's letter (4) be reworded:

Relative parasitic fitness ( W) is mathematically linked to the rate
of disease progress (m) of exponential growth models. It is not
mathematically linked to apparent infection rates (r) which are
meaningful parameters only for logistic disease progress models. If
one knows the exponential growth rates (m) of two isolates and
would like to derive an expression for the relative parasitic fitness
( W) one needs only to subtract the larger m from the smaller m (less
fit isolate). This difference would obviously be a negative decimal.
When converted to W through Eq. 7 one would have, when
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measured without error, the relative parasitic fitness ( W) of the less
fit isolate (the more fit isolate would have, of course, W= 1.0).
Finally, as Fleming and Person (1) and Skylakakis (6) have
stated and as I have indicated above, it is implicitly assumed in Eq.
7 that competitive or synergistic interactions between different
units of inoculum on the common host are negligible. Hence, the
measure of relative parasitic fitness proposed in Eq. 7 loses its
meaning when diseases do not intensify exponentially. Skylakakis
(6) and Jowett et al (3, page 118) have suggested a more complex
model that allows for competition between two pathogenic races.
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