Errata Volume 70, Number 3

In the Letter to the Editor entitled "Selection Pressures and Plant Pathogens: Robustness of the Model," which begins on page 175, corrections are as follows:

page 175, column 1, last paragraph

This letter has two purposes: First, in contrast to the claims of both Sedcole (6) and Leonard and Czochor (5), it shows that Leonard's (4) model is not necessarily locally unstable.

page 175, column 2, equation 1:

$$n_{i+1} = \frac{n_i[1 - k + (1 - q^2) a]}{1 - (1 - q^2) t + n_i[(1 - q^2) (a + t) - k]}$$
(1)

page 176, column 1, equation 6:

$$\frac{\partial \mathbf{g}}{\partial \mathbf{q}_{i}}\Big|_{eq} = \frac{-2\mathbf{q}^{*}\mathbf{n}^{*}(1-\mathbf{n}^{*})(\mathbf{a}+\mathbf{t})}{1-(1-\mathbf{q}^{*2})\mathbf{t}} = -\mathbf{x}_{12}, \text{ say}$$

$$= \frac{\partial \mathbf{f}}{\partial \mathbf{n}_{i}}\Big|_{eq} \times \left(\frac{\partial \mathbf{g}}{\partial \mathbf{n}_{i}}\Big|_{eq}\right)^{-1} \times \frac{\partial \mathbf{g}}{\partial \mathbf{q}_{i}}\Big|_{eq} + \left(\frac{\partial \mathbf{f}}{\partial \mathbf{q}_{i}}\right)_{g}\Big|_{eq}$$
(6)

page 176, column 1, paragraph 2:

When $x_{12}x_{21} < 0$ or $x_{12}x_{21} > 4$, $|\lambda| > 1$ so the nontrivial equilibrium page 176, column 1, paragraph 4:

no evidence to support his choice of values (0.05 \leq s \leq 0.8). In fact, page 177, column 1, equation 7:

in which
$$D = \ln \frac{1-s(1-k)}{1-c-s(1-k+a)} > 0,$$
 and $H = \ln \frac{1-s}{1-c-s(1-t)} < 0$

In common with the models of Leonard and Sedcole, Eq. 7

page 177, column 1, paragraph 5:

The nontrivial equilibrium of Eq. 7 is:

$$(n^*, q^*) = (H/(H-D), \sqrt{A/(A-B)})$$
 (8)

page 177, column 2, paragraph 1:

the stability behavior of the nontrivial equilibrium is uncertain. The direct method of Liapunov is a powerful mathematical means of extending the stability analysis beyond the immediate vicinity of (n^*, q^*) .

page 177, column 2, paragraph 4:

The local stability analysis suggests neutral stability (3). Neutral stability exists globally (Fig. 1D) if

$$\dot{V}(n,q) = \frac{f_n(n)}{g_n(n)} \frac{dn}{dt} + \frac{f_q(q)}{g_q(q)} \frac{dq}{dt}$$

page 177, column 2, end of paragraph 4:

Equation 9 before integrating,